Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Curr Opin Insect Sci ; 64: 101208, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821141

RESUMO

Insects are frequently infected with heritable bacterial endosymbionts. Some of them confer resistance to parasitoids. Such defensive symbionts are sensitive to variation in temperature. Drawing predominantly from the literature on aphids and flies, we show that temperature can affect the reliability of maternal transmission and the strength of protection provided by defensive symbionts. Costs of infection with defensive symbionts can also be temperature-dependent and may even turn into benefits under extreme temperatures, for example, when defensive symbionts increase heat tolerance. Alone or in combination, these mechanisms can drive temperature-associated (latitudinal) clines of infection prevalence with defensive symbionts. This has important consequences for host-parasitoid coevolution, as the relative importance of host-encoded vs. symbiont-provided defenses will shift along such clines.

2.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220122, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37305913

RESUMO

Variation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study, we investigated links between changes in body mass of captive cane toads (Rhinella marina), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a three-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, owing to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Assuntos
Bufo marinus , Imunidade , Leucócitos , Animais , Austrália , Bufo marinus/imunologia
3.
Biol Open ; 12(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36745034

RESUMO

Bacterial assemblages on amphibian skin may play an important role in protecting hosts against infection. In hosts that occur over a range of environments, geographic variation in composition of bacterial assemblages might be due to direct effects of local factors and/or to evolved characteristics of the host. Invasive cane toads (Rhinella marina) are an ideal candidate to evaluate environmental and genetic mechanisms, because toads have evolved major shifts in physiology, morphology, and behavior during their brief history in Australia. We used samples from free-ranging toads to quantify site-level differences in bacterial assemblages and a common-garden experiment to see if those differences disappeared when toads were raised under standardised conditions at one site. The large differences in bacterial communities on toads from different regions were not seen in offspring raised in a common environment. Relaxing bacterial clustering to operational taxonomic units in place of amplicon sequence variants likewise revealed high similarity among bacterial assemblages on toads in the common-garden study, and with free-ranging toads captured nearby. Thus, the marked geographic divergence in bacterial assemblages on wild-caught cane toads across their Australian invasion appears to result primarily from local environmental effects rather than evolved shifts in the host.


Assuntos
Espécies Introduzidas , Animais , Bufo marinus/fisiologia , Austrália , Fenótipo
4.
Evolution ; 77(1): 13-25, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622211

RESUMO

Lineages with independent evolutionary histories often differ in both their morphology and diet. Experimental work has improved our understanding of the links between the biomechanics of morphological traits and foraging performance (trait utility). However, because the expression of foraging-relevant traits and their utility can be highly context-specific, it is often unclear how dietary divergence arises from evolved phenotypic differences. Here, we explore the phenotypic causes of dietary divergence between two genetically and phenotypically divergent lineages of threespine stickleback (Gasterosteus aculeatus) with independent evolutionary histories of freshwater colonization and adaptation. First, using individuals from a line-cross breeding design, we conducted 150 common-garden foraging trials with a community of multiple prey species and performed morphological and behavioral analyses to test for prey-specific trait utility. Second, we tested if the traits that explain variation in foraging performance among all individuals could also explain the dietary divergence between the lineages. Overall, we found evidence for the utility of several foraging traits, but these traits did not explain the observed dietary divergence between the lineages in a common garden. This work suggests that evolved dietary divergence results not only from differences in morphology but also from divergence in behaviors that underlie prey capture success in species-rich prey communities.


Assuntos
Smegmamorpha , Humanos , Animais , Smegmamorpha/anatomia & histologia , Evolução Biológica , Fenótipo , Adaptação Fisiológica , Dieta
5.
Trends Ecol Evol ; 37(6): 488-496, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35183376

RESUMO

The field of paleolimnology has made tremendous progress in reconstructing past biotic and abiotic environmental conditions of aquatic ecosystems based on sediment records. This, together with the rapid development of molecular technologies, provides new opportunities for studying evolutionary processes affecting lacustrine communities over multicentennial to millennial timescales. From an evolutionary perspective, such analyses provide important insights into the chronology of past environmental conditions, the dynamics of phenotypic evolution, and species diversification. Here, we review recent advances in paleolimnological, paleogenetic, and molecular approaches and highlight how their integrative use can help us better understand the ecological and evolutionary responses of species and communities to environmental change.


Assuntos
Evolução Biológica , Ecossistema
6.
Ecol Lett ; 24(12): 2549-2562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34553481

RESUMO

The trophic structure of food webs is primarily determined by the variation in trophic position among species and individuals. Temporal dynamics of food web structure are central to our understanding of energy and nutrient fluxes in changing environments, but little is known about how evolutionary processes shape trophic position variation in natural populations. We propose that trophic position, whose expression depends on both environmental and genetic determinants of the diet variation in individual consumers, is a quantitative trait that can evolve via natural selection. Such evolution can occur either when trophic position is correlated with other heritable morphological and behavioural traits under selection, or when trophic position is a target of selection, which is possible if the fitness effects of prey items are heterogeneously distributed along food chains. Recognising trophic position as an evolving trait, whose expression depends on the food web context, provides an important conceptual link between behavioural foraging theory and food web dynamics, and a useful starting point for the integration of ecological and evolutionary studies of trophic position.


Assuntos
Dieta , Cadeia Alimentar , Humanos , Estado Nutricional , Fenótipo
7.
Ecol Lett ; 24(8): 1709-1731, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34114320

RESUMO

The nutritional diversity of resources can affect the adaptive evolution of consumer metabolism and consumer diversification. The omega-3 long-chain polyunsaturated fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have a high potential to affect consumer fitness, through their widespread effects on reproduction, growth and survival. However, few studies consider the evolution of fatty acid metabolism within an ecological context. In this review, we first document the extensive diversity in both primary producer and consumer fatty acid distributions amongst major ecosystems, between habitats and amongst species within habitats. We highlight some of the key nutritional contrasts that can shape behavioural and/or metabolic adaptation in consumers, discussing how consumers can evolve in response to the spatial, seasonal and community-level variation of resource quality. We propose a hierarchical trait-based approach for studying the evolution of consumers' metabolic networks and review the evolutionary genetic mechanisms underpinning consumer adaptation to EPA and DHA distributions. In doing so, we consider how the metabolic traits of consumers are hierarchically structured, from cell membrane function to maternal investment, and have strongly environment-dependent expression. Finally, we conclude with an outlook on how studying the metabolic adaptation of consumers within the context of nutritional landscapes can open up new opportunities for understanding evolutionary diversification.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Ácidos Docosa-Hexaenoicos , Ecossistema , Fenótipo
8.
Sci Rep ; 11(1): 936, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441802

RESUMO

If optimal investment in anti-predator defences depends on predation risk, invading new regions (and thus, encountering different predators) may favour shifts in that investment. Cane toads offer an ideal system to test this prediction: expensive anti-predator toxins are stored mainly in parotoid glands whose dimensions are easy to measure, and toad invasions have changed the suites of predators they encounter. Although plasticity may influence parotoid morphology, comparisons between parents and progeny revealed that gland dimensions were highly heritable. That heritability supports the plausibility of an evolved basis to variation in gland dimensions. Measurements of 3779 adult toads show that females have larger glands than males, invasive populations have larger glands than in the native-range, and that parotoid sexual size dimorphism varies strongly among invaded areas. Geographic variation in parotoid morphology may be driven by predation risk to both adult toads and offspring (provisioned with toxins by their mother), with toxins allocated to eggs exacerbating the risk of cannibalism but reducing the risk of interspecific predation. Investment into chemical defences has evolved rapidly during the cane toad's international diaspora, consistent with the hypothesis that organisms flexibly adjust resource allocation to anti-predator tactics in response to novel challenges.


Assuntos
Bufanolídeos/toxicidade , Bufo marinus/metabolismo , Glândula Parótida/fisiologia , Animais , Anuros/metabolismo , Anuros/fisiologia , Bufo marinus/fisiologia , Feminino , Espécies Introduzidas , Masculino , Glândula Parótida/metabolismo , Comportamento Predatório/fisiologia , Toxinas Biológicas/metabolismo , Toxinas Biológicas/fisiologia
9.
Proc Biol Sci ; 287(1938): 20201964, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171090

RESUMO

As is common in biological invasions, the rate at which cane toads (Rhinella marina) have spread across tropical Australia has accelerated through time. Individuals at the invasion front travel further than range-core conspecifics and exhibit distinctive morphologies that may facilitate rapid dispersal. However, the links between these morphological changes and locomotor performance have not been clearly documented. We used raceway trials and high-speed videography to document locomotor traits (e.g. hop distances, heights, velocities, and angles of take-off and landing) of toads from range-core and invasion-front populations. Locomotor performance varied geographically, and this variation in performance was linked to morphological features that have evolved during the toads' Australian invasion. Geographical variation in morphology and locomotor ability was evident not only in wild-caught animals, but also in individuals that had been raised under standardized conditions in captivity. Our data thus support the hypothesis that the cane toad's invasion across Australia has generated rapid evolutionary shifts in dispersal-relevant performance traits, and that these differences in performance are linked to concurrent shifts in morphological traits.


Assuntos
Evolução Biológica , Bufo marinus , Espécies Introduzidas , Animais , Austrália , Geografia , Fenótipo
10.
Ecol Evol ; 8(9): 4403-4408, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29760882

RESUMO

Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads (Rhinella marina) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common-garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.

11.
Ecol Evol ; 7(21): 8950-8957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29152190

RESUMO

The parotoid macroglands of bufonid anurans store (and can expel) large volumes of toxic secretions and have attracted detailed research. However, toxins also are stored in smaller glands that are distributed on the limbs and dorsal surface of the body. Female and male cane toads (Rhinella marina) differ in the location of toxin-storage glands and the extent of glandular structures. Female toads store a larger proportion of their toxins in the parotoids than males as well as (to a lesser extent) in smaller glands on the forelimbs. Males have smaller and more elongate parotoids than females, but glands cover more of the skin surface on their limbs (especially hindlimbs) and dorsal surface. The delay to toxin exudation in response to electrostimulation varied among glands in various parts of the body, and did so differently in males than in females. The spatial distribution of toxin glands differs between the sexes even in toads that have been raised under standardized conditions in captivity; hence, the sexual dimorphism is due to heritable factors rather than developmentally plastic responses to ecological (e.g., habitat, predation risk) differences between the sexes. The selective advantages of this sexual dimorphism remain unclear. A priori, we might expect to see toxin widely dispersed across any part of the body likely to be contacted by a predator; and a wide distribution also would be expected if the gland secretions have other (e.g., male-male rivalry) functions. Why, then, is toxin concentrated in the parotoids, especially in female toads? That concentration may enhance the effectiveness of frontal displays to deter predation and also may facilitate the transfer of stored toxins to eggs.

12.
Ticks Tick Borne Dis ; 8(2): 330-333, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28017622

RESUMO

Our surveys of 1401 invasive cane toads (Rhinella marina) from the Hawaiian islands of Hawai'i, O'ahu, and Maui revealed the presence of an exotic tick, Amblyomma rotundatum. Immature and adult female ticks infested three wild adult toads at a single site in the vicinity of a zoo south of Hilo, Island of Hawai'i, Hawai'i, USA. We found no tick-infested toads on O'ahu or Maui. This tick infests cane toads in their native Neotropical range, but it was excluded from Hawai'i when the original founder toads were introduced over 80 years ago. The circumstances of our discovery suggest that A. rotundatum was independently and belatedly introduced to Hawai'i with imported zoo animals, and Hawai'i now joins Florida as the second U.S. state where this tick is established.


Assuntos
Bufo marinus/parasitologia , Espécies Introduzidas , Ixodidae/classificação , Infestações por Carrapato/veterinária , Animais , Havaí/epidemiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia
13.
R Soc Open Sci ; 3(12): 160687, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28083108

RESUMO

Invasive species often exhibit rapid evolutionary changes, and can provide powerful insights into the selective forces shaping phenotypic traits that influence dispersal rates and/or sexual interactions. Invasions also may modify sexual dimorphism. We measured relative lengths of forelimbs and hindlimbs of more than 3000 field-caught adult cane toads (Rhinella marina) from 67 sites in Hawai'i and Australia (1-80 years post-colonization), along with 489 captive-bred individuals from multiple Australian sites raised in a 'common garden' (to examine heritability and reduce environmental influences on morphology). As cane toads spread from east to west across Australia, the ancestral condition (long limbs, especially in males) was modified. Limb length relative to body size was first reduced (perhaps owing to natural selection on locomotor ability), but then increased again (perhaps owing to spatial sorting) in the invasion vanguard. In contrast, the sex disparity in relative limb length has progressively decreased during the toads' Australian invasion. Offspring reared in a common environment exhibited similar geographical divergences in morphology as did wild-caught animals, suggesting a genetic basis to the changes. Limb dimensions showed significant heritability (2-17%), consistent with the possibility of an evolved response. Cane toad populations thus have undergone a major shift in sexual dimorphism in relative limb lengths during their brief (81 years) spread through tropical Australia.

14.
PLoS One ; 8(6): e67502, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840725

RESUMO

We tested the hypotheses that the Emei moustache toad (Leptobrachium boringii) exhibits resource defense polygyny and that combat led to the evolution of male-biased sexual size dimorphism. Between February and March of 2011 and 2012, 26 female and 55 male L. boringii from Mount Emei UNESCO World Heritage Site, Sichuan, China, were observed throughout the breeding season. Prior to the breeding season, males grow 10-16 keratinized maxillary nuptial spines, which fall off once the season has ended. Throughout this time, males construct and defend aquatic nests where they produce advertisement calls to attract females. In a natural setting, we documented 14 cases involving a total of 22 males where males used their moustaches for aggressive interaction, and nest takeover was observed on seven occasions. Males were also observed to possess injuries resulting from combat. Genetic analysis using microsatellite DNA markers revealed several cases of multiple paternity, both within nest and within clutch. This observation indicated that some alternative male reproductive strategy, such as satellite behaviour, is occurring, which may have led to the multiple paternity. Larger males were observed to mate more frequently, and in multiple nests, suggesting that females are selecting for larger males, or that larger males are more capable of defending high quality territories.


Assuntos
Anuros/genética , Anuros/fisiologia , Paternidade , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Casamento , Repetições de Microssatélites/genética , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA