Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Chem Phys ; 151(20): 205101, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779337

RESUMO

Energy equilibration in light-harvesting antenna systems normally occurs before energy is transferred to a reaction center. The equilibration mechanism is a characteristic of the excitation energy transfer (EET) network of the antenna. Characterizing this network is crucial in understanding the first step of photosynthesis. We present our phenomenology-based analysis procedure and results in obtaining the excitonic energy levels, spectral linewidths, and transfer-rate matrix of Light-Harvesting Complex II directly from its 2D electronic spectra recorded at 77 K with waiting times between 100 fs to 100 ps. Due to the restriction of the models and complexity of the system, a unique EET network cannot be constructed. Nevertheless, a recurring pattern of energy transfer with very similar overall time scales between spectral components (excitons) is consistently obtained. The models identify a "bottleneck" state in the 664-668 nm region although with a relatively shorter lifetime (∼4-6 ps) of this state compared to previous studies. The model also determines three terminal exciton states at 675, 677-678, and 680-681 nm that are weakly coupled to each other. The excitation energy equilibration between the three termini is found to be independent of the initial excitation conditions, which is a crucial design for the light-harvesting complexes to ensure the energy flow under different light conditions and avoid excitation trapping. We proposed two EET schemes with tentative pigment assignments based on the interpretation of the modeling results together with previous structure-based calculations and spectroscopic observables.

2.
J Phys Chem B ; 123(31): 6765-6775, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31310128

RESUMO

We measured two-dimensional electronic spectra of light-harvesting complex II (LHCII) at various temperatures (77, 110, 150, 230, and 295 K) under conditions free from singlet-singlet annihilation. We elucidated the temperature-dependent excitation energy transfer dynamics in the Chl a manifold of LHCII. Global analysis revealed that the dynamics can be summarized in distinct time scales from 200 fs up to 15 ps. While the fastest dynamics with a decay time of ∼0.2-0.3 ps are relatively temperature-independent, the lifetimes and relative contributions of slower components showed considerable temperature dependence. The slowest time scale of equilibration with the lowest-energy Chl a increased from ∼5 ps at 295 K to ∼15 ps at 77 K. The final excited state is independent of initial excitation at 230 K and above, whereas static energy disorder is apparent at lower temperatures. A clear temperature dependence of uphill energy transfer processes was also discerned, which is consistent with the detailed-balance condition.


Assuntos
Temperatura Baixa , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Clorofila A/química , Clorofila A/efeitos da radiação , Cinética , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Pisum sativum/química , Análise Espectral/métodos
3.
Phys Chem Chem Phys ; 20(26): 17552-17556, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29915826

RESUMO

Despite their extensive industrial usage, glass-forming liquids are not fully understood, and methods to investigate their dynamical heterogeneity are sought after. Here we show how the appearance of a second component in the visible absorption spectrum of a photosynthetic pigment upon cooling can be used to probe the glass transition of a dimethylsulfoxide-water mixture. The changes in the relative ratio of the two components with respect to temperature follow a sigmoid curve, and we show that the second component arises due to protonation of the pigment at low temperatures. Furthermore, from visible transient absorption spectra we show that, unlike the first component, the dynamics of the second component slows down significantly at lower temperatures, suggesting that there are two distinct environments with fast and slow fluctuations. Our results therefore enable a new method to characterize the dynamical heterogeneity of glass-forming liquids.

4.
Opt Lett ; 43(4): 939-942, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444032

RESUMO

We present a new technique, two-dimensional electronic-Raman spectroscopy (2DER), which combines femtosecond stimulated Raman spectroscopy and a pulse-shaper-assisted 2D spectroscopic scheme for the actinic pump. The 2DER spectrum presents the initial actinic excitation wavelength with nanometer spectral resolution in the first axis and the detected stimulated Raman spectra in the second axis. We measured the correlation of the electronic and vibrational states in the photosynthetic accessory pigment ß-carotene and reveal its photoexcited state manifold.


Assuntos
Elétrons , Análise Espectral Raman/métodos , beta Caroteno/química
5.
Nat Commun ; 8(1): 2206, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263325

RESUMO

Synthetic molecular machines are promising building blocks for future nanoscopic devices. However, the details of their mechanical behaviour are in many cases still largely unknown. A deeper understanding of mechanics at the molecular level is essential for the design and construction of complex nanodevices. Here, we show that transient two-dimensional infrared (T2DIR) spectroscopy makes it possible to monitor the conformational changes of a translational molecular machine during its operation. Translation of a macrocyclic ring from one station to another on a molecular thread is initiated by a UV pulse. The arrival of the shuttling macrocycle at the final station is visible from a newly appearing cross peak between these two moieties. To eliminate spectral congestion in the T2DIR spectra, we use a subtraction method applicable to many other complex molecular systems. The T2DIR spectra indicate that the macrocycle adopts a boat-like conformation at the final station, which contrasts with the chair-like conformation at the initial station.

6.
Rev Sci Instrum ; 88(6): 064101, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28667957

RESUMO

In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ∼1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 µm measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump-probe and autocorrelation signal transients that accurately characterize the equilibrium sample.

7.
Rev Sci Instrum ; 88(1): 014101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147656

RESUMO

In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

8.
J Chem Phys ; 142(21): 212444, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049464

RESUMO

Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a ß-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the ß-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.


Assuntos
Arginina/química , Ácido Glutâmico/química , Peptídeos/química , Ligação de Hidrogênio , Estrutura Molecular , Sais/química , Espectrofotometria Infravermelho
9.
J Phys Chem Lett ; 5(5): 900-904, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24634715

RESUMO

Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu- and Arg+ are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

10.
Phys Chem Chem Phys ; 16(30): 15784-6, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24676430

RESUMO

Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a significant change in the infrared response of Gdm(+) and Ac(-), and cross peaks between them appear in the 2D-IR spectrum. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes of Gdm(+) and Ac(-), as well as the coupling between them.

11.
J Am Chem Soc ; 136(9): 3530-5, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24506134

RESUMO

We show that the VCD signal intensities of amino acids and oligopeptides can be enhanced by up to 2 orders of magnitude by coupling them to a paramagnetic metal ion. If the redox state of the metal ion is changed from paramagnetic to diamagnetic the VCD amplification vanishes completely. From this observation and from complementary quantum-chemical calculations we conclude that the observed VCD amplification finds its origin in vibronic coupling with low-lying electronic states. We find that the enhancement factor is strongly mode dependent and that it is determined by the distance between the oscillator and the paramagnetic metal ion. This localized character of the VCD amplification provides a unique tool to specifically probe the local structure surrounding a paramagnetic ion and to zoom in on such local structure within larger biomolecular systems.


Assuntos
Dicroísmo Circular , Vibração , Aminoácidos/química , Cobalto/química , Dipeptídeos/química , Modelos Moleculares , Oligopeptídeos/química , Conformação Proteica
12.
J Phys Chem Lett ; 4(20): 3397-3401, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24163724

RESUMO

Guanidinium (Gdm+) is a widely used denaturant, but it is still largely unknown how it operates at the molecular level. In particular, the effect of guanidinium on the different types of secondary structure motifs of proteins is at present not clear. Here, we use two-dimensional infrared spectroscopy (2D-IR) to investigate changes in the secondary structure of two proteins with mainly α-helical or ß-sheet content upon addition of Gdm-13C15N3·Cl. We find that upon denaturation, the ß-sheet protein shows a complete loss of ß-sheet structure, whereas the α-helical protein maintains most of its secondary structure. These results suggest that Gdm+ disrupts ß-sheets much more efficiently than α-helices, possibly because in the former, hydrophobic interactions are more important and the number of dangling hydrogen bonds is larger.

13.
J Phys Chem B ; 117(39): 11490-501, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24050152

RESUMO

Trp-cage is a synthetic 20-residue miniprotein which folds rapidly and spontaneously to a well-defined globular structure more typical of larger proteins. Due to its small size and fast folding, it is an ideal model system for experimental and theoretical investigations of protein folding mechanisms. However, Trp-cage's exact folding mechanism is still a matter of debate. Here we investigate Trp-cage's relaxation dynamics in the amide I' spectral region (1530-1700 cm(-1)) using time-resolved infrared spectroscopy. Residue-specific information was obtained by incorporating an isotopic label ((13)C═(18)O) into the amide carbonyl group of residue Gly11, thereby spectrally isolating an individual 310-helical residue. The folding-unfolding equilibrium is perturbed using a nanosecond temperature-jump (T-jump), and the subsequent re-equilibration is probed by observing the time-dependent vibrational response in the amide I' region. We observe bimodal relaxation kinetics with time constants of 100 ± 10 and 770 ± 40 ns at 322 K, suggesting that the folding involves an intermediate state, the character of which can be determined from the time- and frequency-resolved data. We find that the relaxation dynamics close to the melting temperature involve fast fluctuations in the polyproline II region, whereas the slower process can be attributed to conformational rearrangements due to the global (un)folding transition of the protein. Combined analysis of our T-jump data and molecular dynamics simulations indicates that the formation of a well-defined α-helix precedes the rapid formation of the hydrophobic cage structure, implying a native-like folding intermediate, that mainly differs from the folded conformation in the orientation of the C-terminal polyproline II helix relative to the N-terminal part of the backbone. We find that the main free-energy barrier is positioned between the folding intermediate and the unfolded state ensemble, and that it involves the formation of the α-helix, the 310-helix, and the Asp9-Arg16 salt bridge. Our results suggest that at low temperature (T ≪ Tm) a folding path via formation of α-helical contacts followed by hydrophobic clustering becomes more important.


Assuntos
Peptídeos/química , Dobramento de Proteína , Absorção , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lasers , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Temperatura , Fatores de Tempo , Temperatura de Transição , Vibração
14.
J Phys Chem B ; 114(46): 15212-20, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20977228

RESUMO

We investigate how the conformation of small peptides is influenced by the presence or absence of charge on the C-terminus and on the side groups. To this purpose, the conformations of two tripeptides, with acidic and basic side groups, is determined at several pD values using two-dimensional infrared (2DIR) spectroscopy. The investigated pD values are chosen relative to the C-terminal and side-chain pK(a) values in such a way that the C-terminus and side groups are in well-defined protonation states. The measurements are analyzed quantitatively using an excitonic model for the Amide I' mode. From the vibrational coupling and the angle between the Amide I' transition dipoles obtained in this way, the dihedral angles (φ,ψ) of the central C(α) atom are determined. Interestingly, our measurements show that the backbone structure of the peptides is remarkably stable against changing the charges of both the side groups and the C-terminal carboxylate groups. This is probably a consequence of effective screening of the Coulomb interactions between the charged groups by the water molecules between them. We also find that the (φ,ψ) confidence regions obtained from 2DIR measurements can have highly irregular shapes as a consequence of the nonlinear relation between the dihedral angles and the experimentally determined Amide I' coupling and transition-dipole angle.


Assuntos
Concentração de Íons de Hidrogênio , Peptídeos/química , Estrutura Secundária de Proteína , Análise Espectral/métodos , Estrutura Molecular , Peptídeos/genética , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA