Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Appl Opt ; 62(32): 8491-8496, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38037961

RESUMO

Micron-sized dye-doped polymer beads were imaged using transmitted/reflected light microscopy and photothermal heterodyne imaging (PHI) measurements. The transmitted/reflected light images show distinct ring patterns that are attributed to diffraction effects and/or internal reflections within the beads. In the PHI experiments pump laser induced heating changes the refractive index and size of the bead, which causes changes in the diffraction pattern and internal reflections. This creates an analogous ring pattern in the PHI images. The ring pattern disappears in both the reflected light and PHI experiments when an incoherent light source is used as a probe. When the beads are imaged in an organic medium heat transfer changes the refractive index of the environment, and gives rise to a ring pattern external to the beads in the PHI images. This causes the beads to appear larger than their physical dimensions in PHI experiments. This external signal does not appear when the beads are imaged in air because the refractive index changes in air are very small.

2.
Eur J Med Chem ; 249: 115123, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708677

RESUMO

The alkylindole (AI), WIN55212-2, modulates the activity of several proteins, including cannabinoid receptors 1 and 2 (CB1R, CB2R), and at least additional G protein-coupled receptor (GPCR) that remains uncharacterized with respect to its molecular identity and pharmacological profile. Evidence suggests that such AI-sensitive GPCRs are expressed by the human kidney cell line HEK293. We synthesized fourteen novel AI analogues and evaluated their activities at AI-sensitive GPCRs using [35S]GTPγS and [3H]WIN55212-2 binding in HEK293 cell membranes, and performed in silico pharmacophore modeling to identify characteristics that favor binding to AI-sensitive GPCRs versus CB1R/CB2R. Compounds 10 and 12 stimulated [35S]GTPγS binding (EC50s = 3.5 and 1.1 nM, respectively), and this response was pertussis toxin-sensitive, indicating that AI-sensitive GPCRs couple to Gi/o proteins. Five AI analogues reliably distinguished two binding sites that correspond to the high and low affinity state of AI-sensitive GPCRs coupled or not to G proteins. In silico pharmacophore modeling suggest 3 characteristics that favor binding to AI-sensitive GPCRs versus CB1R/CB2R: 1) an s-cis orientation of the two aromatic rings in AI analogues, 2) a narrow dihedral angle between the carbonyl group and the indole ring plane [i.e., O-C(carbonyl)-C3-C2] and 3) the presence of a carbonyl oxygen. The substituted alkylindoles reported here represent novel chemical tools to study AI-sensitive GPCRs.


Assuntos
Canabinoides , Humanos , Canabinoides/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato) , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide , Receptores de Canabinoides/metabolismo
3.
Int J Low Extrem Wounds ; 21(2): 111-119, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32567415

RESUMO

Veterans with diabetic foot ulcers (DFUs) represent the highest percentage of lower extremity amputations (LEAs) within the Veterans Affairs (VA) population. Many veterans have additional risk factors for amputation. Few studies focus on advanced therapies for this population. This study explores the impact of early application of dehydrated human amniotic membrane allograft (DAMA) with comprehensive care on preventing amputation. This prospective, single-center cohort study (ClinicalTrials.gov Identifier NCT02632929) was conducted through Boise VA Medical Center. Patients with DFUs were objectively stratified for LEA risk. Those with moderate to high amputation risk could participate. Participants received comprehensive care and weekly application of DAMA. Primary endpoint was avoidance of major LEA. Secondary endpoint was wound epithelialization. Monitoring continued 4 months. Between July 2015 and March 2017, 20 patients (mean age 67.2 years) with 24 DFU classified as moderate (12 wounds) to high risk (12 wounds) for amputation were enrolled. Wound volumes ranged from 0.072 cm3 to 56.4 cm3. Risk factors included neuropathy (20 patients), osteomyelitis (16 wounds), exposed tendon/ligament/bone (19 wounds), Charcot (5 patients), and peripheral arterial disease (13 wounds). All subjects avoided amputation within the study period, all 24 wounds achieved re-epithelialization within 4 to 33 weeks; mean healing time 13.2 weeks. Cost for the DAMA tissue ranged from $750 to $38 150. Estimated cost for LEA ranges from $30 000 to $50 000. No treatment-related adverse events during the study period were reported. The results suggest that early and frequent application of DAMA with comprehensive care may help prevent amputation. Additional research will help inform third-party payors and clinicians.


Assuntos
Diabetes Mellitus , Pé Diabético , Veteranos , Idoso , Amputação Cirúrgica/efeitos adversos , Estudos de Coortes , Pé Diabético/diagnóstico , Pé Diabético/epidemiologia , Pé Diabético/cirurgia , Humanos , Estudos Prospectivos
4.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684770

RESUMO

The Sterling Research Group identified pravadoline as an aminoalkylindole (AAI) non-steroidal anti-inflammatory pain reliever. As drug design progressed, the ability of AAI analogs to block prostaglandin synthesis diminished, and antinociceptive activity was found to result from action at the CB1 cannabinoid receptor, a G-protein-coupled receptor (GPCR) abundant in the brain. Several laboratories applied computational chemistry methods to ultimately conclude that AAI and cannabinoid ligands could overlap within a common binding pocket but that WIN55212-2 primarily utilized steric interactions via aromatic stacking, whereas cannabinoid ligands required some electrostatic interactions, particularly involving the CB1 helix-3 lysine. The Huffman laboratory identified strategies to establish CB2 receptor selectivity among cannabimimetic indoles to avoid their CB1-related adverse effects, thereby stimulating preclinical studies to explore their use as anti-hyperalgesic and anti-allodynic pharmacotherapies. Some AAI analogs activate novel GPCRs referred to as "Alkyl Indole" receptors, and some AAI analogs act at the colchicine-binding site on microtubules. The AAI compounds having the greatest potency to interact with the CB1 receptor have found their way into the market as "Spice" or "K2". The sale of these alleged "herbal products" evades FDA consumer protections for proper labeling and safety as a medicine, as well as DEA scheduling as compounds having no currently accepted medical use and a high potential for abuse. The distribution to the public of potent alkyl indole synthetic cannabimimetic chemicals without regard for consumer safety contrasts with the adherence to regulatory requirements for demonstration of safety that are routinely observed by ethical pharmaceutical companies that market medicines.


Assuntos
Canabinoides/química , Canabinoides/farmacologia , Drogas Desenhadas/química , Drogas Desenhadas/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Animais , Benzoxazinas/farmacologia , Sítios de Ligação , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Desenho de Fármacos , Humanos , Indóis/química , Indóis/farmacologia , Ligantes , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química , Eletricidade Estática , Relação Estrutura-Atividade
5.
Neuromodulation ; 19(8): 848-856, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27730704

RESUMO

OBJECTIVES: The ISPR was initially created to monitor the product performance of Medtronic implanted intrathecal drug infusion and spinal cord systems available in the United States. MATERIALS AND METHODS: Data were collected from 50 representative sites implanting and following patients with intrathecal drug delivery systems across the United States between August 7, 2003 and January 31, 2014. Device performance over time was estimated using life table survival methods. RESULTS: Of the 6093 patients enrolled in the ISPR, 3405 (55.9%) were female and 2675 (43.9%) were male, and 13 (0.2%) did not provide gender data. The average age at enrollment was 52.9 years (SD =17.6 years) and average follow-up time was 29.6 months. Currently, the estimates of device survival from pump-related events exceed 90% for all pump models across the applicable follow-up time points. The majority of product performance events were catheter-related. At 5 years of follow-up, all applicable catheter models, with the exception of revised not as designed or grafted not as designed catheters, had greater than 81% survival from catheter-related events. CONCLUSIONS: The ISPR is designed to serve as an ongoing source of system and device-related information with a focus on "real-world" safety and product performance. ISPR data continue to be used to guide future product development efforts aimed at improving product reliability and quality.


Assuntos
Analgésicos/administração & dosagem , Bombas de Infusão Implantáveis , Injeções Espinhais , Espasticidade Muscular/tratamento farmacológico , Adulto , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/mortalidade , Sistema de Registros , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento , Estados Unidos
6.
Neuropharmacology ; 110(Pt A): 143-153, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27449567

RESUMO

Anecdotal reports suggest that abused synthetic cannabinoids produce cannabis-like "highs," but some of their effects may also differ from traditional cannabinoids such as Δ(9)-tetrahydrocannabinol (THC). This study examined the binding affinities of first-generation indole-derived synthetic cannabinoids at cannabinoid and noncannabinoid receptors and their effects in a functional observational battery (FOB) and drug discrimination in mice. All seven compounds, except JWH-391, had favorable affinity (≤159 nM) for both cannabinoid receptors. In contrast, binding at noncannabinoid receptors was absent or weak. In the FOB, THC and the six active compounds disrupted behaviors in CNS activation and muscle tone/equilibrium domains. Unlike THC, however, synthetic cannabinoids impaired behavior across a wider dose and domain range, producing autonomic effects and signs of CNS excitability and sensorimotor reactivity. In addition, mice acquired JWH-018 discrimination, and THC and JWH-073 produced full substitution whereas the 5-HT2B antagonist mianserin did not substitute in mice trained to discriminate JWH-018 or THC. Urinary metabolite analysis showed that the compounds were extensively metabolized, with metabolites that could contribute to their in vivo effects. Together, these results show that, while first-generation synthetic cannabinoids shared some effects that were similar to those of THC, they also possessed effects that differed from traditional cannabinoids. The high nanomolar (or absent) affinities of these compounds at receptors for most major neurotransmitters suggests that these divergent effects may be related to the greater potencies and/or efficacies at CB1 receptors; however, action(s) at noncannabinoid receptors yet to be assessed or via different signaling pathways cannot be ruled out.


Assuntos
Canabinoides/metabolismo , Dronabinol/metabolismo , Drogas Ilícitas/metabolismo , Indóis/metabolismo , Naftalenos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Animais , Canabinoides/química , Relação Dose-Resposta a Droga , Dronabinol/química , Drogas Ilícitas/química , Indóis/química , Masculino , Mianserina/química , Mianserina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Naftalenos/química , Ligação Proteica/fisiologia
7.
Life Sci ; 97(1): 55-63, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24071522

RESUMO

Originally synthesized for research purposes, indole- and pyrrole-derived synthetic cannabinoids are the most common psychoactive compounds contained in abused products marketed as "spice" or "herbal incense." While CB1 and CB2 receptor affinities are available for most of these research chemicals, in vivo pharmacological data are sparse. In mice, cannabinoids produce a characteristic profile of dose-dependent effects: antinociception, hypothermia, catalepsy and suppression of locomotion. In combination with receptor binding data, this tetrad battery has been useful in evaluation of the relationship between the structural features of synthetic cannabinoids and their in vivo cannabimimetic activity. Here, published tetrad studies are reviewed and additional in vivo data on synthetic cannabinoids are presented. Overall, the best predictor of likely cannabimimetic effects in the tetrad tests was good CB1 receptor affinity. Further, retention of good CB1 affinity and in vivo activity was observed across a wide array of structural manipulations of substituents of the prototypic aminoalkylindole molecule WIN55,212-2, including substitution of an alkyl for the morpholino group, replacement of an indole core with a pyrrole or phenylpyrrole, substitution of a phenylacetyl or tetramethylcyclopropyl group for JWH-018's naphthoyl, and halogenation of the naphthoyl group. This flexibility of cannabinoid ligand-receptor interactions has been a particular challenge for forensic scientists who have struggled to identify and regulate each new compound as it has appeared on the drug market. One of the most pressing future research needs is determination of the extent to which the pharmacology of these synthetic cannabinoids may differ from those of classical cannabinoids.


Assuntos
Benzoxazinas/farmacologia , Canabinoides/farmacologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Benzoxazinas/química , Benzoxazinas/metabolismo , Canabinoides/química , Canabinoides/metabolismo , Drogas Desenhadas/química , Drogas Desenhadas/metabolismo , Drogas Desenhadas/farmacologia , Humanos , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Camundongos , Morfolinas/química , Morfolinas/metabolismo , Naftalenos/química , Naftalenos/metabolismo , Pirróis/química , Pirróis/metabolismo , Pirróis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
8.
J Recept Signal Transduct Res ; 33(6): 367-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24094141

RESUMO

CONTEXT: Beta-arrestins are known to couple to some G-protein-coupled receptors (GPCRs) to regulate receptor internalization, G-protein coupling and signal transduction, but have not been investigated for most receptors, and for very few receptors in vivo. Previous studies have shown that beta-arrestin2 deletion enhances the efficacy of specific cannabinoid agonists. OBJECTIVE: The present study hypothesized that brain cannabinoid CB1 receptors are regulated by beta-arrestin2. METHODS: Beta-arrestin2+/+ and -/- mice were used. Western blotting was used to determine the relative levels of each beta-arrestin subtype in mouse brain. Receptor binding was measured to determine whether deletion of beta-arrestin2 influences agonist binding to brain CB1 receptors, or the subcellular localization of CB1 in brain membranes subjected to differential centrifugation. A variety of cannabinoid agonists from different chemical classes were investigated for their ability to activate G-proteins in the presence and absence of beta-arrestin2 in cerebellum, hippocampus and cortex. RESULTS: No differences were found in the density of beta-arrestin1 or cannabinoid CB1 receptors in several brains of beta-arrestin2+/+ versus -/- mice. Differences between genotypes were found in the proportion of high- and low-affinity agonist binding sites in brain areas that naturally express higher levels of beta-arrestin2. Cortex from beta-arrestin2-/- mice contained less CB1 in the P1 fraction and more CB1 in the P2 fraction compared to beta-arrestin2+/+. Of the agonists assayed for activity, only Δ(9)-tetrahydrocannabinol (THC) exhibited a difference between genotypes, in that it was less efficacious in beta-arrestin2-/- than +/+ mouse membranes. CONCLUSION: Beta-arrestin2 regulates cannabinoid CB1 receptors in brain.


Assuntos
Arrestinas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Agonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas
10.
J Anal Toxicol ; 36(5): 293-302, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22582264

RESUMO

The increasing prevalence and use of herbal mixtures containing synthetic cannabinoids presents a growing public health concern and legal challenge for society. In contrast to the plant-derived cannabinoids in medical marijuana and other cannabinoid-based therapeutics, the commonly encountered synthetic cannabinoids in these mendaciously labeled products constitute a structurally diverse set of compounds of relatively unknown pharmacology and toxicology. Indeed, the use of these substances has been associated with an alarming number of hospitalizations and emergency room visits. Moreover, there are already several hundred known cannabinoid agonist compounds that could potentially be used for illicit purposes, posing an additional challenge for public health professionals and law enforcement efforts, which often require the detection and identification of the active ingredients for effective treatment or prosecution. A solid-phase microextraction headspace gas chromatography-mass spectrometry method is shown here to allow for rapid and reliable detection and structural identification of many of the synthetic cannabinoid compounds that are currently or could potentially be used in herbal smoking mixtures. This approach provides accelerated analysis and results that distinguish between structural analogs within several classes of cannabinoid compounds, including positional isomers. The analytical results confirm the continued manufacture and distribution of herbal materials with synthetic cannabinoids and provide insight into the manipulation of these products to avoid legal constraints and prosecution.


Assuntos
Canabinoides/análise , Drogas Desenhadas/análise , Controle de Medicamentos e Entorpecentes/métodos , Toxicologia Forense/métodos , Cromatografia Gasosa-Espectrometria de Massas , Preparações de Plantas/química , Canabinoides/química , Drogas Desenhadas/química , Toxicologia Forense/legislação & jurisprudência , Humanos , Estrutura Molecular , Extração em Fase Sólida
11.
Bioorg Med Chem ; 20(6): 2067-81, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22341572

RESUMO

To develop SAR at both the cannabinoid CB(1) and CB(2) receptors for 3-(1-naphthoyl)indoles bearing moderately electron withdrawing substituents at C-4 of the naphthoyl moiety, 1-propyl and 1-pentyl-3-(4-fluoro, chloro, bromo and iodo-1-naphthoyl) derivatives were prepared. To study the steric and electronic effects of substituents at the 8-position of the naphthoyl group, the 3-(4-chloro, bromo and iodo-1-naphthoyl)indoles were also synthesized. The affinities of both groups of compounds for the CB(1) and CB(2) receptors were determined and several of them were evaluated in vivo in the mouse. The effects of these substituents on receptor affinities and in vivo activity are discussed and structure-activity relationships are presented. Although many of these compounds are selective for the CB(2) receptor, only three JWH-423, 1-propyl-3-(4-iodo-1-naphthoyl)indole, JWH-422, 2-methyl-1-propyl-3-(4-iodo-1-naphthoyl)indole, the 2-methyl analog of JWH-423 and JWH-417, 1-pentyl-3-(8-iodo-1-naphthoyl)indole, possess the desirable combination of low CB(1) affinity and good CB(2) affinity.


Assuntos
Indóis/química , Indóis/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Halogenação , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Drug Alcohol Depend ; 123(1-3): 148-53, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22127210

RESUMO

BACKGROUND: Smoking of synthetic cannabinoid-enhanced "herbal incense" is an emerging substance abuse problem. The indole-derived cannabinoids identified in these products were originally developed as research tools and are structurally distinct from cannabinoids in the cannabis plant. Although abused by humans, most published research on this class of compounds has been performed in vitro. The purpose of this study was to evaluate a novel series of 1-pentyl-3-phenylacetylindoles in mice. METHODS: The potencies of these analogs to produce the cannabinoid agonist effects of antinociception, hypothermia and suppression of locomotion were evaluated in ICR mice. The major structural manipulations in the present series included the type of substituent (i.e., unsubstituted, methyl, methoxy, chloro, bromo, and fluoro) and the position of the substituent on the phenyl ring (i.e., 2-, 3- or 4-position). RESULTS: Potencies of this series of phenylacetylindoles for each cannabinoid effect were highly correlated with CB(1) receptor affinities reported previously. Active compounds produced a profile of effects that resembled that exhibited by Δ(9)-tetrahydrocannabinol (THC). The most critical factor affecting in vivo potency was the position of the substituent. Whereas compounds with 2- and 3-phenylacetyl substituents were efficacious with good potencies, 4-substituents resulted in compounds that had poor potency or were inactive. CONCLUSIONS: These results suggest that phenylacetylindoles with good CB(1) binding affinity share pharmacological properties with THC in mice; however, they also emphasize the complexity of molecular interactions of synthetic cannabinoids with CB(1) receptors and suggest that scheduling efforts based solely upon structural features should proceed with caution.


Assuntos
Canabinoides/agonistas , Canabinoides/síntese química , Indóis/farmacologia , Naftalenos/farmacologia , Analgésicos , Animais , Canabinoides/metabolismo , Dronabinol/farmacologia , Hipotermia/induzido quimicamente , Indóis/síntese química , Indóis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
13.
Chem Commun (Camb) ; 47(13): 3975-7, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21347494

RESUMO

A concise synthesis of a highly functionalized intermediate lacking only C10 of the mitomycin backbone is described. The key to this development is the Brønsted acid-catalyzed aza-Darzens reaction used to forge the cis-aziridine. Additionally an oxidative ketalization fortuitously occurs during the quinone-enamine coupling step, leading to an orthogonally protected hydroquinone.


Assuntos
Antibióticos Antineoplásicos/síntese química , Aziridinas/síntese química , Mitomicina/síntese química , Antibióticos Antineoplásicos/química , Aziridinas/química , Catálise , Cristalografia por Raios X , Mitomicina/química , Modelos Moleculares , Estereoisomerismo
14.
J Am Chem Soc ; 133(8): 2571-82, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21306156

RESUMO

All attempts to synthesize (PNP)Ni(OTf) form instead ((t)Bu(2)PCH(2)SiMe(2)NSiMe(2)OTf)Ni(CH(2)P(t)Bu(2)). Abstraction of F(-) from (PNP)NiF by even a catalytic amount of BF(3) causes rearrangement of the (transient) (PNP)Ni(+) to analogous ring-opened [((t)Bu(2)PCH(2)SiMe(2)NSiMe(2)F)]Ni(CH(2)P(t)Bu(2)). Abstraction of Cl(-) from (PNP)NiCl with NaB(C(6)H(3)(CF(3))(2))(4) in CH(2)Cl(2) or C(6)H(5)F gives (PNP)NiB(C(6)H(3)(CF(3))(2))(4), the key intermediate in these reactions is (PNP)Ni(+), [(PNP)Ni](+), in which one Si-C bond (together with N and two P) donates to Ni. This makes this Si-C bond subject to nucleophilic attack by F(-), triflate, and alkoxide/ether (from THF). This σ(Si-C) complex binds CO in the time of mixing and also binds chloride, both at nickel. Evidence is offered of a "self-healing" process, where the broken Si-C bond can be reformed in an equilibrium process. (PNP)Ni(+) reacts rapidly with H(2) to give (PN(H)P)NiH(+), which can be deprotonated to form (PNP)NiH. A variety of nucleophilic attacks (and THF polymerization) on the coordinated Si-C bond are envisioned to occur perpendicular to the Si-C bond, based on the character of the LUMO of (PNP)Ni(+).


Assuntos
Carbono/química , Níquel/química , Compostos Organometálicos/síntese química , Silício/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química
15.
Eur J Pharmacol ; 651(1-3): 96-105, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21114999

RESUMO

Rimonabant, the prototypic antagonist of cannabinoid CB(1) receptors, has been reported to have inverse agonist properties at higher concentrations, which may complicate its use as a tool for mechanistic evaluation of cannabinoid pharmacology. Consequently, recent synthesis efforts have concentrated on discovery of a neutral antagonist using a variety of structural templates. The purpose of this study was to evaluate the pharmacological properties of the putative neutral cannabinoid CB(1) receptor antagonist O-2050, a sulfonamide side chain analog of Δ(8)-tetrahydrocannabinol. O-2050 and related sulfonamide cannabinoids exhibited good affinity for both cannabinoid CB(1) and CB(2) receptors. While the other sulfonamide analogs produced cannabinoid agonist effects in vivo (e.g., activity suppression, antinociception, and hypothermia), O-2050 stimulated activity and was inactive in the other two tests. O-2050 also decreased food intake in mice, an effect that was reminiscent of that produced by rimonabant. Unlike rimonabant, however, O-2050 did not block the effects of cannabinoid agonists in vivo, even when administered i.c.v. In contrast, O-2050 antagonized the in vitro effects of cannabinoid agonists in [(35)S]GTPγS and mouse vas deferens assays without having activity on its own in either assay. Further evaluation revealed that O-2050 fully and dose-dependently substituted for Δ(9)-tetrahydrocannabinol in a mouse drug discrimination procedure (a cannabinoid agonist effect) and that it inhibited forskolin-stimulated cyclic AMP signaling with a maximum efficacy of approximately half that of the full agonist CP55,940 [(-)-cis-3-[2-hydroxy-4(1,1-dimethyl-heptyl)phenyl]-trans-4-(3-hydroxy-propyl)cyclohexanol]. Together, these results suggest that O-2050 is not a viable candidate for classification as a neutral cannabinoid CB(1) receptor antagonist.


Assuntos
Dronabinol/análogos & derivados , Piranos/química , Piranos/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , AMP Cíclico/metabolismo , Dronabinol/química , Dronabinol/metabolismo , Dronabinol/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Camundongos , Piranos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/metabolismo
16.
Methods Rep RTI Press ; 20112011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23397508

RESUMO

Gathering and communicating knowledge are important aspects of the scientific endeavor. Yet presentation of data in public forums such as scientific meetings and publications makes it available not only to scientists, but also to others who may have different ideas about how to use research findings. A recent example of this type of hijacking is the introduction of synthetic cannabinoids that are sprayed on herbal products and subsequently smoked for their marijuana-like intoxicating properties. Originally developed for the legitimate research purpose of furthering understanding of the cannabinoid system, these synthetic cannabinoids are being abused worldwide, creating issues for regulatory and law enforcement agencies that are struggling to keep up with the growing number of compounds of various structural motifs. Basic and clinical scientists need to provide advice now to facilitate decision-making about the health threats posed by this emerging problem.

17.
Bioorg Med Chem ; 18(22): 7809-15, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20943404

RESUMO

Δ(8)-Tetrahydrocannabinol (26), 3-(1',1'-dimethylbutyl)- (12), 3-(1',1'-dimethylpentyl)- (13), 3-(1',1'-dimethylhexyl)- (14) and 3-(1',1'-dimethylheptyl)-Δ(8)-tetrahydrocannabinol (15) have been converted into the corresponding 1-bromo-1-deoxy-Δ(8)-tetrahydrocannabinols (25, 8-11). This was accomplished using a protocol developed in our laboratory in which the trifluoromethanesulfonate of a phenol undergoes palladium mediated coupling with pinacolborane. Reaction of this dioxaborolane with aqueous-methanolic copper(II) bromide provides the aryl bromide. The affinities of these bromo cannabinoids for the cannabinoid CB(1) and CB(2) receptors were determined. All of these compounds showed selectivity for the CB(2) receptor and one of them, 1-bromo-1-deoxy-3-(1',1'-dimethylhexyl)-Δ(8)-tetrahydrocannabinol (10), exhibits 52-fold selectivity for this receptor with good (28nM) affinity.


Assuntos
Dronabinol/análogos & derivados , Dronabinol/química , Receptor CB2 de Canabinoide/metabolismo , Dronabinol/síntese química , Dronabinol/farmacologia , Humanos , Ligantes , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
18.
Org Prep Proced Int ; 42(5): 490-493, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20976119
19.
Bioorg Med Chem ; 18(15): 5475-82, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20621488

RESUMO

Three 1-methoxy analogs of CP-47,497 (7, 8, and 19) have been synthesized and their affinities for the cannabinoid CB(1) and CB(2) receptors have been determined. Although these compounds exhibit selectivity for the CB(2) receptor none have significant affinity for either receptor. Modeling and receptor docking studies were carried out, which provide a rationalization for the weak affinities of these compounds for either receptor.


Assuntos
Cicloexanóis/química , Animais , Sítios de Ligação , Células CHO , Simulação por Computador , Cricetinae , Cricetulus , Cicloexanóis/síntese química , Cicloexanóis/farmacologia , Humanos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
20.
Br J Pharmacol ; 160(3): 585-93, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20100276

RESUMO

BACKGROUND AND PURPOSE: 'Spice' is an herbal blend primarily marketed in Europe as a mild hallucinogen with prominent cannabis-like effects and as a legal alternative to cannabis. However, a recent report identified a number of synthetic additives in samples of 'Spice'. One of these, the indole derivative JWH018, is a ligand for the cannabinoid receptor 1 (CB(1)) cannabinoid receptor and inhibits cAMP production in CB(1) receptor-expressing CHO cells. Other effects of JWH018 on CB(1) receptor-mediated signalling are not known, particularly in neurons. Here we have evaluated the signalling pathways activated by JWH018 at CB(1) receptors. EXPERIMENTAL APPROACH: We investigated the effects of JWH018 on neurotransmission in cultured autaptic hippocampal neurons. We further analysed its activation of ERK1/2 mitogen activated protein kinase (MAPK) and internalization of CB(1) receptors in HEK293 cells stably expressing this receptor. KEY RESULTS: In cultured autaptic hippocampal neurons, JWH018 potently inhibited excitatory postsynaptic currents (IC(50)= 14.9 nM) in a concentration- and CB(1) receptor-dependent manner. Furthermore, it increased ERK1/2 MAPK phosphorylation (EC(50)= 4.4 nM). We also found that JWH018 potently induced rapid and robust CB(1) receptor internalization (EC(50)= 2.8 nM; t(1/2)= 17.3 min). CONCLUSIONS AND IMPLICATIONS: JWH018, a prominent component of several herbal preparations marketed for their psychoactivity, is a potent and effective CB(1) receptor agonist that activates multiple CB(1) receptor signalling pathways. Thus, it is likely that the subjective effects of 'Spice' are due to activation of cannabinoid CB(1) receptors by JWH018, added to this herbal preparation.


Assuntos
Canabinoides/farmacologia , Indóis/farmacologia , Naftalenos/farmacologia , Preparações de Plantas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Técnicas de Cultura de Células , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Alucinógenos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos , Neurônios/metabolismo , Neurônios/fisiologia , Fosforilação/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA