Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 166(1): e38-e49, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501313

RESUMO

OBJECTIVE: Adeno-associated virus is a clinically used gene therapy vector but has not been studied in lung transplantation. We sought to determine the efficacy of adeno-associated virus delivery during static cold storage via the airway versus the pulmonary artery before lung transplantation in a rodent model. METHODS: Lewis rat lung grafts were treated with a dose of 8e8 or 4e9 viral genome/µL recombinant adeno-associated virus subtype-9 vectors containing firefly luciferase genomes administered via the pulmonary artery or airway during cold storage. A control group did not receive adeno-associated virus. Recipient syngeneic rats then underwent single left lung transplantation. Animals underwent bioluminescence imaging on postoperative days 7, 14, 28, and 56. Explanted tissues were prepared as lysates to quantify luciferase activity. Immunohistochemistry was performed to evaluate cellular transgene expression patterns. RESULTS: Control animals with no luminescent signal produced a background radiance of 6.1e4 p/s/cm2/sr. In the airway delivery group, mean radiance was greater than the control at 4e9 viral genome/µL postoperative day 7 radiance 6.9e4 p/s/cm2/sr (P = .04). In the pulmonary artery delivery group, we observed greater in vivo luminescence in animals receiving 4e9 viral genome/µL compared with all other groups. However, analysis of tissue lysate revealed greater luminescence in the airway delivery group and suggested off-target expression in heart and liver tissue in the pulmonary artery delivery group. Immunohistochemistry demonstrated transgene staining in distal airway epithelium and alveoli but sparing of the vasculature in the airway delivery group. CONCLUSIONS: Adeno-associated virus mediates gene transduction during static cold storage in rat lung isografts when administered via the airway and pulmonary artery. Airway administration leads to robust transgene expression in respiratory epithelial cells, whereas pulmonary artery administration targets alternative cell types and increases extrapulmonary transgene expression.


Assuntos
Dependovirus , Transplante de Pulmão , Ratos , Animais , Dependovirus/genética , Roedores/genética , Ratos Endogâmicos Lew , Coração , Pulmão/metabolismo , Transplante de Pulmão/efeitos adversos , Vetores Genéticos
2.
Xenotransplantation ; 28(3): e12680, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33619844

RESUMO

BACKGROUND: Thrombosis is a known consequence of intraportal islet transplantation, particularly for xenogeneic islets. To define the origins of thrombosis after islet xenotransplantation and relate it to early inflammation, we examined porcine islets transplanted into non-human primates using a dual-transplant model to directly compare islet characteristics. METHODS: α1,3-Galactosyltransferase gene-knockout (GTKO) islets with and without expression of the human complement regulatory transgene CD46 (hCD46) were studied. Biologically inert polyethylene microspheres were used to examine the generic pro-thrombotic effects of particle embolization. Immunohistochemistry was performed 1 and 24 hours after transplantation. RESULTS: Xeno-islet transplantation activated both extrinsic and intrinsic coagulation pathways. The intrinsic pathway was also initiated by microsphere embolization, while extrinsic pathway tissue factor (TF) and platelet aggregation were more specific to engrafted islets. hCD46 expression significantly reduced TF, platelet, fibrin, and factor XIIIa accumulation in and around islets but did not alter intrinsic factor activation. Layers of TF+ cells emerged around islets within 24 hours, particularly co-localized with vimentin, and identified as CD3+ and CD68+ cells inflammatory cells. CONCLUSIONS: These findings detail the origins of thrombosis following islet xenotransplantation, relate it to early immune activation, and suggest a role for transgenic hCD46 expression in its mitigation. Layers of TF-positive inflammatory cells and fibroblasts around islets at 24 hours may have important roles in the progressive events of thrombosis, inflammatory cell recruitment, rejection, and the ultimate outcome of transplanted grafts. These suggest that the strategies targeting these elements could yield more progress toward successful xenogeneic islet engraftment and survival.


Assuntos
Transplante das Ilhotas Pancreáticas , Animais , Xenoenxertos , Inflamação , Suínos , Transgenes , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA