Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659838

RESUMO

Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccAFv2) using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2 classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-like G0 state, and it incorporates a tunable parameter to filter out less certain classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-art methods even while classifying more cell cycle states, including G0. We showcased the versatility of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various normalization methods and gene identifiers. We provide methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover underlying biological signals. The classifier can be used either as an R package integrated with Seurat (https://github.com/plaisier-lab/ccafv2_R) or a PyPI package integrated with scanpy (https://pypi.org/project/ccAFv2/). We proved that ccAFv2 has enhanced accuracy, flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular heterogeneity, and deciphering the molecular mechanisms by which proliferation and quiescence affect cellular processes.

2.
Bioconjug Chem ; 34(11): 2144-2153, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931154

RESUMO

For the past two decades, the emerging role of the endothelin (ET) axis in cancer has been extensively investigated, and its involvement in several mechanisms described as "hallmarks of cancer" has clearly highlighted its potential as a therapeutic target. Despite the growing interest in finding effective anticancer drugs, no breakthrough treatment has successfully made its way to the market. Recently, our team reported the development of a new immuno-positron emission tomography probe targeting the ET A receptor (ETA, one of the ET receptors) that allows the successful detection of ETA+ glioblastoma, paving the way for the elaboration of novel antibody-based strategies. In this study, we describe the synthesis of two PET/NIRF (positron emission tomography/near-infrared fluorescence) dually functionalized imaging agents, directed against ETA or ETB, that could be used to detect ET+ tumors and select patients that will be eligible for fluorescence-guided surgery. Both imaging modalities were brought together using a highly versatile tetrazine platform bearing the IRDye800CW fluorophore and desferrioxamine for 89Zr chelation. This so-called monomolecular multimodal imaging probe was then "clicked", via an inverse-electron-demand Diels-Alder reaction, to antibodies conjugated site-specifically with a trans-cyclooctene group. This approach has led to homogeneous and well-defined constructs that retained their high affinity and high specificity for their respective target, as shown by flow cytometry and NIRF in vivo imaging experiments in nude mice bearing CHO-ETA and CHO-ETB tumors. Ultimately, these bimodal immunoconjugates could be used to improve the outcomes of patients with ET+ tumors.


Assuntos
Glioblastoma , Imunoconjugados , Animais , Camundongos , Humanos , Receptores de Endotelina , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Imagem Óptica/métodos , Linhagem Celular Tumoral
4.
Cancer Res Commun ; 3(6): 1041-1056, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377608

RESUMO

Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance: Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Humanos , Glioblastoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Temozolomida/farmacologia , Mitocôndrias , Células-Tronco Neoplásicas
5.
Cell Mol Life Sci ; 80(7): 181, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37329342

RESUMO

Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal-ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37-83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.


Assuntos
Proteínas Hedgehog , Medula Espinal , Humanos , Camundongos , Animais , Proteínas Hedgehog/genética , Medula Espinal/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição/metabolismo , Epêndima/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo
6.
Eur J Nucl Med Mol Imaging ; 50(11): 3192-3201, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37280303

RESUMO

BACKGROUND: The resistance of glioblastoma stem cells (GSCs) to treatment is one of the causes of glioblastoma (GBM) recurrence. Endothelin A receptor (ETA) overexpression in GSCs constitutes an attractive biomarker for targeting this cell subpopulation, as illustrated by several clinical trials evaluating the therapeutic efficacy of endothelin receptor antagonists against GBM. In this context, we have designed an immunoPET radioligand combining the chimeric antibody targeting ETA, chimeric-Rendomab A63 (xiRA63), with 89Zr isotope and evaluated the abilities of xiRA63 and its Fab (ThioFab-xiRA63) to detect ETA+ tumors in a mouse model xenografted orthotopically with patient-derived Gli7 GSCs. RESULTS: Radioligands were intravenously injected and imaged over time by µPET-CT imaging. Tissue biodistribution and pharmacokinetic parameters were analyzed, highlighting the ability of [89Zr]Zr-xiRA63 to pass across the brain tumor barrier and achieve better tumor uptake than [89Zr]Zr-ThioFab-xiRA63. CONCLUSIONS: This study shows the high potential of [89Zr]Zr-xiRA63 in specifically targeting ETA+ tumors, thus raising the possibility of detecting and treating ETA+ GSCs, which could improve the management of GBM patients.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/diagnóstico por imagem , Receptor de Endotelina A , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Anticorpos , Células-Tronco , Linhagem Celular Tumoral , Zircônio
8.
EMBO J ; 42(7): e111961, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574362

RESUMO

Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.


Assuntos
Proteína Quinase Ativada por DNA , Glioblastoma , Nucleotidiltransferases , Humanos , Carcinogênese , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Glioblastoma/genética , Imunidade Inata , Inflamação , Nucleotidiltransferases/metabolismo , Microambiente Tumoral , Proteína Quinase Ativada por DNA/metabolismo
9.
Trends Cancer ; 9(1): 9-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400694

RESUMO

Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia
10.
Methods Mol Biol ; 2389: 45-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34558000

RESUMO

Whereas neural stem cells and their niches have been extensively studied in the brain, little is known on these cells, their environment, and their function in the adult spinal cord. Adult spinal cord neural stem cells are located in a complex niche surrounding the central canal, and these cells expressed genes which are specifically expressed in the caudal central nervous system (CNS). In-depth characterization of these cells in vivo and in vitro will provide interesting clues on the possibility to utilize this endogenous cell pool to treat spinal cord damages. We describe here a procedure to derive and culture neural spinal cord stem cells from adult mice using the neurosphere method.


Assuntos
Células-Tronco Neurais , Envelhecimento , Animais , Diferenciação Celular , Camundongos , Medula Espinal , Traumatismos da Medula Espinal
11.
Methods Mol Biol ; 2389: 103-110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34558006

RESUMO

We demonstrated the presence of neural stem cells and/or progenitor cells in the adult human spinal cord. This chapter provides materials and methods to harvest high-quality samples of thoracolumbar, lumbar, and sacral adult human spinal cord and human dorsal root ganglia isolated from brain-dead patients who had agreed before passing to donate their bodies to science for therapeutic and scientific advances. The methods to culture precursor cells from the adult human spinal cord are also described.


Assuntos
Células-Tronco Neurais , Medula Espinal , Adulto , Técnicas de Cultura de Células , Separação Celular , Gânglios Espinais , Humanos
12.
Cancer Lett ; 526: 103-111, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808285

RESUMO

Invasive growth along white matter (WM) tracts is one of the most prominent clinicopathological features of glioma and is also an important reason for surgical treatment failure in glioma patients. A full understanding of relevant clinical features and mechanisms is of great significance for finding new therapeutic targets and developing new treatment regimens and strategies. Herein, we review the imaging and histological characteristics of glioma patients with WM tracts invasion and summarize the possible molecular mechanism. On this basis, we further discuss the correlation between glioma molecular typing, radiotherapy and tumor treating fields (TTFields) and the invasion of glioma along WM tracts.


Assuntos
Glioma/complicações , Substância Branca/patologia , Glioma/mortalidade , Glioma/patologia , Humanos , Neurocirurgiões , Análise de Sobrevida
13.
Cells ; 10(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34943841

RESUMO

Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr-the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.


Assuntos
Linhagem da Célula , Epêndima/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Oncostatina M/metabolismo , RNA/genética , Traumatismos da Medula Espinal/genética , Células-Tronco/patologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Cílios/genética , Regulação para Baixo/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Subunidade beta de Receptor de Oncostatina M , RNA/metabolismo , Esferoides Celulares/metabolismo , Medula Espinal/patologia , Regulação para Cima/genética
14.
Cancers (Basel) ; 13(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771555

RESUMO

Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate. We used three GSC cultures and glioma resections to examine the expression, regulation, and role of two transcription factors, SLUG (SNAI2) and TAL1 (SCL), involved in epithelial to mesenchymal transition (EMT), hematopoiesis, vascular identity, and treatment resistance in various cancers. In vitro, SLUG and a truncated isoform of TAL1 (TAL1-PP22) were strongly upregulated upon Notch1 activation in GSC, together with LMO2, a known cofactor of TAL1, which formed a complex with truncated TAL1. SLUG was also upregulated by TGF-ß1 treatment and by co-culture with endothelial cells. In patient samples, the full-length isoform TAL1-PP42 was expressed in all glioma grades. In contrast, SLUG and truncated TAL1 were preferentially overexpressed in GBMs. SLUG and TAL1 are expressed in the tumor microenvironment by perivascular and endothelial cells, respectively, and to a minor extent, by a fraction of epidermal growth factor receptor (EGFR) -amplified GBM cells. Mechanistically, both SLUG and truncated TAL1 reduced GSC growth after their respective overexpression. Collectively, this study provides new evidence for the role of SLUG and TAL1 in regulating GSC plasticity and growth.

16.
Cancers (Basel) ; 13(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925547

RESUMO

Diffuse grade II IDH-mutant gliomas are slow-growing brain tumors that progress into high-grade gliomas. They present intratumoral cell heterogeneity, and no reliable markers are available to distinguish the different cell subtypes. The molecular mechanisms underlying the formation of this cell diversity is also ill-defined. Here, we report that SOX9 and OLIG1 transcription factors, which specifically label astrocytes and oligodendrocytes in the normal brain, revealed the presence of two largely nonoverlapping tumoral populations in IDH1-mutant oligodendrogliomas and astrocytomas. Astrocyte-like SOX9+ cells additionally stained for APOE, CRYAB, ID4, KCNN3, while oligodendrocyte-like OLIG1+ cells stained for ASCL1, EGFR, IDH1, PDGFRA, PTPRZ1, SOX4, and SOX8. GPR17, an oligodendrocytic marker, was expressed by both cells. These two subpopulations appear to have distinct BMP, NOTCH1, and MAPK active pathways as stainings for BMP4, HEY1, HEY2, p-SMAD1/5 and p-ERK were higher in SOX9+ cells. We used primary cultures and a new cell line to explore the influence of NOTCH1 activation and BMP treatment on the IDH1-mutant glioma cell phenotype. This revealed that NOTCH1 globally reduced oligodendrocytic markers and IDH1 expression while upregulating APOE, CRYAB, HEY1/2, and an electrophysiologically-active Ca2+-activated apamin-sensitive K+ channel (KCNN3/SK3). This was accompanied by a reduction in proliferation. Similar effects of NOTCH1 activation were observed in nontumoral human oligodendrocytic cells, which additionally induced strong SOX9 expression. BMP treatment reduced OLIG1/2 expression and strongly upregulated CRYAB and NOGGIN, a negative regulator of BMP. The presence of astrocyte-like SOX9+ and oligodendrocyte-like OLIG1+ cells in grade II IDH1-mutant gliomas raises new questions about their role in the pathology.

17.
J Exp Clin Cancer Res ; 40(1): 139, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33894774

RESUMO

BACKGROUND: Glioblastomas stem-like cells (GSCs) by invading the brain parenchyma, remains after resection and radiotherapy and the tumoral microenvironment become stiffer. GSC invasion is reported as stiffness sensitive and associated with altered N-glycosylation pattern. Glycocalyx thickness modulates integrins mechanosensing, but details remain elusive and glycosylation enzymes involved are unknown. Here, we studied the association between matrix stiffness modulation, GSC migration and MGAT5 induced N-glycosylation in fibrillar 3D context. METHOD: To mimic the extracellular matrix fibrillar microenvironments, we designed 3D-ex-polyacrylonitrile nanofibers scaffolds (NFS) with adjustable stiffnesses by loading multiwall carbon nanotubes (MWCNT). GSCs neurosphere were plated on NFSs, allowing GSCs migration and MGAT5 was deleted using CRISPR-Cas9. RESULTS: We found that migration of GSCs was maximum at 166 kPa. Migration rate was correlated with cell shape, expression and maturation of focal adhesion (FA), Epithelial to Mesenchymal Transition (EMT) proteins and (ß1,6) branched N-glycan binding, galectin-3. Mutation of MGAT5 in GSC inhibited N-glycans (ß1-6) branching, suppressed the stiffness dependence of migration on 166 kPa NFS as well as the associated FA and EMT protein expression. CONCLUSION: MGAT5 catalysing multibranched N-glycans is a critical regulators of stiffness induced invasion and GSCs mechanotransduction, underpinning MGAT5 as a serious target to treat cancer.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Fenótipo
18.
Nat Commun ; 11(1): 2661, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461552

RESUMO

RNA G-quadruplexes (RG4s) are four-stranded structures known to control mRNA translation of cancer relevant genes. RG4 formation is pervasive in vitro but not in cellulo, indicating the existence of poorly characterized molecular machinery that remodels RG4s and maintains them unfolded. Here, we performed a quantitative proteomic screen to identify cytosolic proteins that interact with a canonical RG4 in its folded and unfolded conformation. Our results identified hnRNP H/F as important components of the cytoplasmic machinery modulating the structural integrity of RG4s, revealed their function in RG4-mediated translation and uncovered the underlying molecular mechanism impacting the cellular stress response linked to the outcome of glioblastoma.


Assuntos
Quadruplex G , Glioblastoma/fisiopatologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica/fisiologia , Instabilidade Genômica/fisiologia , Humanos , RNA Mensageiro/metabolismo
19.
Sci Rep ; 9(1): 14612, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601895

RESUMO

Glioblastoma Multiforme (GBM) invasiveness renders complete surgical resection impossible and highly invasive Glioblastoma Initiating Cells (GICs) are responsible for tumour recurrence. Their dissemination occurs along pre-existing fibrillary brain structures comprising the aligned myelinated fibres of the corpus callosum (CC) and the laminin (LN)-rich basal lamina of blood vessels. The extracellular matrix (ECM) of these environments regulates GIC migration, but the underlying mechanisms remain largely unknown. In order to recapitulate the composition and the topographic properties of the cerebral ECM in the migration of GICs, we have set up a new aligned polyacrylonitrile (PAN)-derived nanofiber (NF) scaffold. This system is suitable for drug screening as well as discrimination of the migration potential of different glioblastoma stem cells. Functionalisation with LN increases the spatial anisotropy of migration and modulates its mode from collective to single cell migration. Mechanistically, equally similar to what has been observed for mesenchymal migration of GBM in vivo, is the upregulation of galectin-3 and integrin-ß1 in Gli4 cells migrating on our NF scaffold. Downregulation of Calpain-2 in GICs migrating in vivo along the CC and in vitro on LN-coated NF underlines a difference in the turnover of focal adhesion (FA) molecules between single-cell and collective types of migration.


Assuntos
Neoplasias Encefálicas/patologia , Galectina 3/metabolismo , Glioblastoma/patologia , Integrina beta1/metabolismo , Células-Tronco Neoplásicas/patologia , Alicerces Teciduais/química , Resinas Acrílicas/química , Animais , Proteínas Sanguíneas , Adesão Celular , Movimento Celular , Corpo Caloso/metabolismo , Galectinas , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Nus , Nanofibras/química , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos
20.
Stem Cell Reports ; 12(5): 1159-1177, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31031189

RESUMO

Anamniotes, rodents, and young humans maintain neural stem cells in the ependymal zone (EZ) around the central canal of the spinal cord, representing a possible endogenous source for repair in mammalian lesions. Cell diversity and genes specific for this region are ill defined. A cellular and molecular resource is provided here for the mouse and human EZ based on RNA profiling, immunostaining, and fluorescent transgenic mice. This uncovered the conserved expression of 1,200 genes including 120 transcription factors. Unexpectedly the EZ maintains an embryonic-like dorsal-ventral pattern of expression of spinal cord developmental transcription factors (ARX, FOXA2, MSX1, and PAX6). In mice, dorsal and ventral EZ cells express Vegfr3 and are derived from the embryonic roof and floor plates. The dorsal EZ expresses a high level of Bmp6 and Gdf10 genes and harbors a subpopulation of radial quiescent cells expressing MSX1 and ID4 transcription factors.


Assuntos
Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , RNA/genética , Medula Espinal/metabolismo , Células-Tronco/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Feminino , Humanos , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Pessoa de Meia-Idade , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , RNA/metabolismo , Medula Espinal/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA