Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(7): 074905, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36813705

RESUMO

The elasticity of disordered and polydisperse polymer networks is a fundamental problem of soft matter physics that is still open. Here, we self-assemble polymer networks via simulations of a mixture of bivalent and tri- or tetravalent patchy particles, which result in an exponential strand length distribution analogous to that of experimental randomly cross-linked systems. After assembly, the network connectivity and topology are frozen and the resulting system is characterized. We find that the fractal structure of the network depends on the number density at which the assembly has been carried out, but that systems with the same mean valence and same assembly density have the same structural properties. Moreover, we compute the long-time limit of the mean-squared displacement, also known as the (squared) localization length, of the cross-links and of the middle monomers of the strands, showing that the dynamics of long strands is well described by the tube model. Finally, we find a relation connecting these two localization lengths at high density and connect the cross-link localization length to the shear modulus of the system.

2.
Macromolecules ; 54(8): 3769-3779, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34054144

RESUMO

Due to their unique structural and mechanical properties, randomly cross-linked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (e.g., chain-length and end-to-end distributions), we generate disordered phantom networks with different cross-linker concentrations C and initial densities ρinit and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same C, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by ρinit. We rationalize this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a nonmonotonic function of the density of elastically active strands, and that this behavior has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly cross-linked polymer networks, the knowledge of the exact chain conformation distribution is essential for correctly predicting the elastic properties. Finally, we apply our theoretical approach to literature experimental data, qualitatively confirming our interpretations.

3.
Biotechnol Adv ; 41: 107546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275940

RESUMO

Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.


Assuntos
Biodiversidade , Lipase , Enzimas , Glicosídeo Hidrolases , Plantas
4.
Soft Matter ; 13(46): 8706-8716, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29130096

RESUMO

We use computer simulations to investigate how a catalytic reaction in a polymer sol can induce the formation of a polymer gel. To this aim we consider a solution of homopolymers in which freely-diffusing catalysts convert the originally repulsive A monomers into attractive B ones. We find that at low temperatures this reaction transforms the polymer solution into a physical gel that has a remarkably regular mesostructure in the form of a cluster phase, absent in the usual homopolymer gels obtained by a quench in temperature. We investigate how this microstructuring depends on catalyst concentration, temperature, and polymer density and show that the dynamics for its formation can be understood in a semi-quantitative manner using the interaction potentials between the particles as input. The structuring of the copolymers and the AB sequences resulting from the reactions can be discussed in the context of the phase behaviour of correlated random copolymers. The location of the spinodal line as found in our simulations is consistent with analytical predictions. Finally, we show that the observed structuring depends not only on the chemical distribution of the A and B monomers but also on the mode of formation of this distribution.

5.
Langmuir ; 30(41): 12400-10, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25285477

RESUMO

Amphiphilic copolymers are often used as compatibilizing or stabilizing agents, either in solution or at surfaces. In the special case of multiblock copolymers the connectivity of the blocks combines with the antagonistic behavior of the different types of blocks. Here we report on the behavior of solutions of amphiphilic multiblock copolymers with a large number of blocks and a low fraction of solvophobic monomers in contact with an attractive surface. Using lattice Monte Carlo simulations, the influence on the structures of the solvent quality and the type of surface from noninteracting to strongly attractive to the solvophobic monomers can be assessed. In the presence of a surface bulk micelles are formed that are not different in size and shape from the micelles observed in the absence of a surface. When increasing the surface attraction, solvophobic monomers tend to adsorb either as isolated blocks or forming surface micelles. Evidence is given of a surface concentration threshold above which surface micelles can form due to microphase separation. These surface micelles are in equilibrium with bulk micelles, some of which are connected to the surface through a path of either hydrophobic and/or hydrophilic blocks or hydrophobic cross-links, or both. The size distributions of bulk and connected micelles are similar. With increasing surface concentration surface micelles get organized due to the steric repulsion between core-shell surface micelles. Moreover, these organized surface micelles percolate. The connected micelles form a concentrated layer parallel to the attractive surface. In addition, these systems are governed by two very different time scales: The fast one leads to micellar self-assembly in the bulk and at the surface while the slow one prevents the system from reaching equilibrium in the course of the simulations and corresponds to the transfer of copolymers from the bulk to the attractive surface.

6.
Food Chem ; 165: 348-53, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038686

RESUMO

In the context of the potential health benefits of food polyphenols, the bioavailability of tannins (i.e. proanthocyanidins) is a major issue, which is strongly influenced by the polydispersity and the degree of polymerisation of tannins. The average degree of polymerisation (DP) of tannins is usually determined using depolymerisation methods, which do not provide any information about their polymer distribution. Moreover, it is still a challenge to characterise tannin fractions of high polydispersity and/or containing polymers of high molecular weights, due to the limit of detection of direct mass spectrometry (MS) analysis methods. In the present work, the polydispersity of several tannin fractions is investigated by two complementary methods: a MALDI-MS method and a semi-preparative sub-fractionation. Using a combination of these methods we are able to gain insight into the DP distributions of the fractions consisting of tannins of medium and high DP. Moreover combining analyses can be useful to assess and compare the DP distributions of most tannin fractions.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Polímeros/química , Taninos/análise , Proantocianidinas/química
7.
Food Chem ; 149: 114-20, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24295684

RESUMO

Encapsulation of polyphenols can be used for improving their stability and targeting. We present here a spectrophotometric method to probe the micellar solubilisation and inter-micellar exchange of polyphenols using the 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free radical as a visible probe. Our method relies on the partitioning of DPPH· into micelles, on the reduction of DPPH· by polyphenols, and on the change in absorbance of DPPH· when reduced/oxidised. Hence, an absorbance drop at 528 nm gives evidence of the co-localisation of polyphenols and DPPH· in micelles. Using catechin and sodium dodecyl sulfate (SDS) as model molecules, we have shown that the reduction stoichiometry increases up to the critical micelle concentration (CMC) of SDS, where it reaches a plateau: this is due to the solubilisation of catechin in pre-micellar aggregates and then in micelles. The initial rate of reduction increases with increasing SDS concentration up to the CMC and then decreases due to a dilution effect.


Assuntos
Compostos de Bifenilo/química , Radicais Livres/química , Picratos/química , Polifenóis/química , Espectrofotometria/métodos , Micelas , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA