Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Commun Biol ; 6(1): 56, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36646768

RESUMO

Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications. Here, CRISPR-dCas9 (dead Cas9) and nCas9 (Cas9 nickase) deaminase vectors were developed for a broad range of phytopathogenic bacteria. A gene for a dCas9 or nCas9, cytosine deaminase CDA1, and glycosylase inhibitor fusion protein (cytosine base editor, or CBE) was applied to base editing under the control of different promoters. Results showed that the RecA promoter led to nearly 100% modification of the target region. When residing on the broad host range plasmid pHM1, CBERecAp is efficient in creating base edits in strains of Xanthomonas, Pseudomonas, Erwinia and Agrobacterium. CBE based on nCas9 extended the editing window and produced a significantly higher editing rate in Pseudomonas. Strains with nonsynonymous mutations in test genes displayed expected phenotypes. By multiplexing guide RNA genes, the vectors can modify up to four genes in a single round of editing. Whole-genome sequencing of base-edited isolates of Xanthomonas oryzae pv. oryzae revealed guide RNA-independent off-target mutations. Further modifications of the CBE, using a CDA1 variant (CBERecAp-A) reduced off-target effects, providing an improved editing tool for a broad group of phytopathogenic bacteria.


Assuntos
Sistemas CRISPR-Cas , Citosina , Citosina/metabolismo , Edição de Genes/métodos , Bactérias/genética , Bactérias/metabolismo , RNA
2.
Front Plant Sci ; 13: 868581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874027

RESUMO

The largest family of disease resistance genes in plants are nucleotide-binding site leucine-rich repeat genes (NLRs). The products of these genes are responsible for recognizing avirulence proteins (Avr) of phytopathogens and triggering specific defense responses. Identifying NLRs in plant genomes with standard gene annotation software is challenging due to their multidomain nature, sequence diversity, and clustered genomic distribution. We present the results of a genome-wide scan and comparative analysis of NLR loci in three coffee species (Coffea canephora, Coffea eugenioides and their interspecific hybrid Coffea arabica). A total of 1311 non-redundant NLR loci were identified in C. arabica, 927 in C. canephora, and 1079 in C. eugenioides, of which 809, 562, and 695 are complete loci, respectively. The NLR-Annotator tool used in this study showed extremely high sensitivities and specificities (over 99%) and increased the detection of putative NLRs in the reference coffee genomes. The NLRs loci in coffee are distributed among all chromosomes and are organized mostly in clusters. The C. arabica genome presented a smaller number of NLR loci when compared to the sum of the parental genomes (C. canephora, and C. eugenioides). There are orthologous NLRs (orthogroups) shared between coffee, tomato, potato, and reference NLRs and those that are shared only among coffee species, which provides clues about the functionality and evolutionary history of these orthogroups. Phylogenetic analysis demonstrated orthologous NLRs shared between C. arabica and the parental genomes and those that were possibly lost. The NLR family members in coffee are subdivided into two main groups: TIR-NLR (TNL) and non-TNL. The non-TNLs seem to represent a repertoire of resistance genes that are important in coffee. These results will support functional studies and contribute to a more precise use of these genes for breeding disease-resistant coffee cultivars.

3.
Front Plant Sci ; 11: 1230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013944

RESUMO

Aphids secrete proteins from their stylets that evidence indicates function similar to pathogen effectors for virulence. Here, we describe two small candidate effector gene families of the pea aphid, Acyrthosiphon pisum, that share highly conserved secretory signal peptide coding regions and divergent non-secretory coding sequences derived from miniature exons. The KQY candidate effector family contains eleven members with additional isoforms, generated by alternative splicing. Pairwise comparisons indicate possible four unique KQY families based on coding regions without the secretory signal region. KQY1a, a representative of the family, is encoded by a 968 bp mRNA and a gene that spans 45.7 kbp of the genome. The locus consists of 37 exons, 33 of which are 15 bp or smaller. Additional KQY members, as well as members of the KHI family, share similar features. Differential expression analyses indicate that the genes are expressed preferentially in salivary glands. Proteomic analysis on salivary glands and saliva revealed 11 KQY members in salivary proteins, and KQY1a was detected in an artificial diet solution after aphid feeding. A single KQY locus and two KHI loci were identified in Myzus persicae, the peach aphid. Of the genes that can be anchored to chromosomes, loci are mostly scattered throughout the genome, except a two-gene region (KQY4/KQY6). We propose that the KQY family expanded in A. pisum through combinatorial assemblies of a common secretory signal cassette and novel coding regions, followed by classical gene duplication and divergence.

4.
Viruses ; 11(5)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091710

RESUMO

During infection, Citrus tristeza virus (CTV) produces a non-coding subgenomic RNA referred to as low-molecular-weight tristeza 1 (LMT1), which for a long time has been considered as a by-product of the complex CTV replication machinery. In this study, we investigated the role of LMT1 in the virus infection cycle using a CTV variant that does not produce LMT1 (CTV-LMT1d). We showed that lack of LMT1 did not halt virus ability to replicate or form proper virions. However, the mutant virus demonstrated significantly reduced invasiveness and systemic spread in Nicotiana benthamiana as well as an inability to establish infection in citrus. Introduction of CTV-LMT1d into the herbaceous host resulted in elevation of the levels of salicylic acid (SA) and SA-responsive pathogenesis-related genes beyond those upon inoculation with wild-type (WT) virus (CTV-WT). Further analysis showed that the LMT1 RNA produced by CTV-WT or via ectopic expression in the N. benthamiana leaves suppressed SA accumulation and up-regulated an alternative oxidase gene, which appeared to mitigate the accumulation of reactive oxygen species. To the best of our knowledge, this is the first report of a plant viral long non-coding RNA being involved in counter-acting host response by subverting the SA-mediated plant defense.


Assuntos
Closterovirus/genética , Closterovirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal/imunologia , RNA Longo não Codificante/imunologia , RNA Viral/imunologia , Citrus/virologia , Vírus de DNA/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Proteínas Mitocondriais , Oxirredutases , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas de Plantas , RNA Viral/genética , Ácido Salicílico , Nicotiana/virologia , Carga Viral , Replicação Viral
5.
Nat Prod Res ; 33(20): 2951-2957, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30304960

RESUMO

Two Streptomyces spp. strains responsible for potato common scab infections in Uruguay which do not produce diketopiperazines were identified through whole-genome sequencing, and the virulence factor produced by one of them was isolated and characterized. Phylogenetic analysis showed that both pathogenic strains can be identified as S. niveiscabiei, and the structure of the phytotoxin was elucidated as that of the polyketide desmethylmensacarcin using MS and NMR methods. The metabolite is produced in yields of ∼200 mg/L of culture media, induces deep necrotic lesions on potato tubers, stuns root and shoot growth in radish seedlings, and is comparatively more aggressive than thaxtomin A. This is the first time that desmethylmensacarcin, a member of a class of compounds known for their antitumor and antibiotic activity, is associated with phytotoxicity. More importantly, it represents the discovery of a new virulence factor related to potato common scab, an economically-important disease affecting potato production worldwide.


Assuntos
Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/química , Dicetopiperazinas , Indóis/toxicidade , Estrutura Molecular , Filogenia , Piperazinas/toxicidade , Doenças das Plantas/etiologia , Raphanus/microbiologia , Streptomyces/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/isolamento & purificação
6.
Mol Plant Pathol ; 18(6): 798-810, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27276658

RESUMO

The lateral organ boundary domain (LBD) genes encode a group of plant-specific proteins that function as transcription factors in the regulation of plant growth and development. Citrus sinensis lateral organ boundary 1 (CsLOB1) is a member of the LBD family and functions as a disease susceptibility gene in citrus bacterial canker (CBC). Thirty-four LBD members have been identified from the Citrus sinensis genome. We assessed the potential for additional members of LBD genes in citrus to function as surrogates for CsLOB1 in CBC, and compared host gene expression on induction of different LBD genes. Using custom-designed transcription activator-like (TAL) effectors, two members of the same clade as CsLOB1, named CsLOB2 and CsLOB3, were found to be capable of functioning similarly to CsLOB1 in CBC. RNA sequencing and quantitative reverse transcription-polymerase chain reaction analyses revealed a set of cell wall metabolic genes that are associated with CsLOB1, CsLOB2 and CsLOB3 expression and may represent downstream genes involved in CBC.


Assuntos
Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Citrus sinensis/genética , Suscetibilidade a Doenças , Genoma de Planta/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética
7.
Rev. peru. med. exp. salud publica ; 19(2): 63-67, abr.-jun. 2002. tab
Artigo em Espanhol | LILACS, LIPECS, INS-PERU | ID: lil-493486

RESUMO

En el presente estudio se intentó detectar la presencia del gen de toxina en cepas locales de Escherichia Coli serológicamente relacionados a la catergoria enterohemorrágica, caracterizando además un aislamiento reportado como serotipo 0157:H7 procedente de la ciudad de Tacna (cepa Tacna 410), mediante la reacción en cadena de la polimerasa (PCR) y secuenciamiento. Los resultados confirmaron la presencia del gen de la toxina shiga sólo en la cepa Tacna 410, obteniéndose una identidad del 100 por ciento entre la secuencia nucleótida del gen de la copa Tacna 410 y secuencias reportadas de la toxna shiga de tipo II en el Genebank. Asimismo, se detectó en la cepa Tacna 410 propiedades hemolíticas y el gen eae asociado al fenómeno de attaching and effacing, características de una típica cepa de ECEH.


We tried to detect the Shiga gene in local Escherichia Coli strains serologically related the enterohemorragic category. At the same time, using polymerase chain reaction (PCR) and sequencing, we characterized a strain confirmed as E. Coli 0157:H7 serotype, which was isolated in Tacna (a city in southern Peru) (Tacna 410 strain). Our results confirmed the presence of the Shiga toxin gene only in E. coli strain Tacna 410, and we found 100 percentage identify between the sequence from the amplified gene and reference sequence for type II Shiga toxin in the gene bank. We also detected in the Tacna 410 strain hemolytic properties and the eae gene, which is associated to attaching and effacing lesions, typical features of EHEC, strains.


Assuntos
/genética , Reação em Cadeia da Polimerase , Toxina Shiga/genética , Estudos Retrospectivos , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA