Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(26): e2401617, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713753

RESUMO

DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.


Assuntos
Aptâmeros de Nucleotídeos , DNA , Sistemas de Liberação de Medicamentos , Nanoestruturas , Nanoestruturas/química , Aptâmeros de Nucleotídeos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , DNA/química
2.
ACS Biomater Sci Eng ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567981

RESUMO

The groundbreaking gene-editing mechanism, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), paired with the protein Cas9, has significantly advanced the realms of biology, medicine, and agriculture. Through its precision in modifying genetic sequences, CRISPR holds the potential to alter the trajectory of genetic disorders and accelerate advancements in agriculture. While its therapeutic potential is profound, the technology also invites ethical debates centered on responsible use and equity in access. Parallelly, in the environmental monitoring sphere and sensing in water, especially biosensors have been instrumental in evaluating natural water sources' quality. These biosensors, integrating biological components with detection techniques, have the potential to revolutionize healthcare by providing rapid and minimally invasive diagnostic methods. However, the design and application of these sensors bring forth challenges, especially in ensuring sensitivity, selectivity, and ethical data handling. This article delves into the prospective use of CRISPR-Cas technology for sensing in water, exploring its capabilities in detecting diverse biomarkers, hazardous substances, and varied reactions in water and wastewater systems.

3.
ACS Biomater Sci Eng ; 10(2): 657-676, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241520

RESUMO

The fusion of MXene-based materials with microfluidics not only presents a dynamic and promising avenue for innovation but also opens up new possibilities across various scientific and technological domains. This Perspective delves into the intricate synergy between MXenes and microfluidics, underscoring their collective potential in material science, sensing, energy storage, and biomedical research. This intersection of disciplines anticipates future advancements in MXene synthesis and functionalization as well as progress in advanced sensing technologies, energy storage solutions, environmental applications, and biomedical breakthroughs. Crucially, the manufacturing and commercialization of MXene-based microfluidic devices, coupled with interdisciplinary collaborations, stand as pivotal considerations. Envisioning a future where MXenes and microfluidics collaboratively shape our technological landscape, addressing intricate challenges and propelling innovation forward necessitates a thoughtful approach. This viewpoint provides a comprehensive assessment of the current state of the field while outlining future prospects for the integration of MXene-based entities and microfluidics.


Assuntos
Microfluídica , Nitritos , Elementos de Transição
4.
ACS Biomater Sci Eng ; 9(12): 6516-6530, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38019724

RESUMO

MXene materials, which consist of nitrides, carbides, or carbonitrides of transition metals, possess a distinctive multilayered structure resulting from the specific etching of the "A" layer from MAX phase precursors. This unique structure allows for tunable properties through intercalation and surface modification. Beyond their structural novelty, MXenes exhibit exceptional thermal conductivity, mechanical resilience, and versatile surface functionalization capabilities, rendering them highly versatile for a wide range of applications. They are particularly renowned for their multifaceted utility and are emerging as outstanding candidates in applications requiring robust thermal conductivity. MXenes, when integrated into textile, fiber, and film forms, have gained increasing relevance in fields where efficient heat management is essential. This work provides a comprehensive exploration of MXene materials, delving into their inherent structure and thermal properties. This Perspective places particular emphasis on their crucial role in efficient heat dissipation, which is vital for the development of wearable heaters and related technologies. Engineered compounds such as MXenes have become indispensable for personal and industrial heating applications, and the advancement of wearable electronic devices necessitates heaters with specific properties, including transparency, mechanical reliability, and adaptability. Recent advancements in emergent thermally conductive MXene compounds are discussed in this study, shedding light on their potential contributions across various domains, including wearable heaters and biosensors for healthcare and environmental monitoring. Furthermore, the versatile nature of MXene materials extends to their application in interfacial solar steam generation, representing a breakthrough approach for solar water desalination. This multifaceted utility underscores the vast potential of MXenes in addressing various pressing challenges.


Assuntos
Nitritos , Reprodutibilidade dos Testes
5.
Small ; 18(7): e2103326, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34889512

RESUMO

Developing highly efficient noble-metal-free electrocatalysts with a scalable and environmentally friendly synthesis approach remains a challenge in the field of electrocatalytic water splitting. To overcome this problem, self-supported fluorine-modified 2D ultrathin nickel hydroxide (F-Ni(OH)2 ) nanosheets (NSs) for the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) are prepared with a scalable and ascendant one-step synthesis route. The enhanced redox activity, electrical conductivity and a great number of exposed active sites of the heterogeneous catalysts improve charge migration for the electrocatalytic reactions. The density of states of the d orbitals of the Ni atoms significantly increases near the Fermi level, thereby indicating that the Ni atoms near the F-dopants promote electrical conduction in the Ni(OH)2 monolayer. The F-Ni(OH)2 electrocatalyst exhibits notable OER and UOR activity with onset potentials of 1.43 and 1.16 V versus RHE, respectively required to reach 10 mA cm-2 , which are comparable to those of commercial noble-metal-based electrocatalysts. With RuCo-OH nanospheres, the settled F-Ni(OH)2 ||RuCo-OH cell requires merely 1.55 and 1.37 V to reach 10 mA cm-2 with superb durability for 24 h in overall water and urea electrolysis, respectively. Overall, high-quality, and efficient noble-metal-free electrocatalysts for overall water and urea electrolysis can be prepared with a simple, scalable, and reproducible preparation method.

6.
Bioconjug Chem ; 29(2): 363-370, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29323877

RESUMO

Curcumin-conjugated gold clusters (CUR-AuNCs) were synthesized using a "green" procedure and utilized as an anticancer and a bioimaging agent. Curcumin is a well-known anticancer agent, which forms a cluster when reacting with a gold precursor under mild alkali condition. A fluorescence spectroscopy analysis showed that the CUR-AuNCs emitted red fluorescence (650 nm) upon visible light (550) irradiation. Fourier transform infrared spectroscopy analysis confirmed the stretching and bending nature between the gold atoms and curcumin. Meanwhile, transmission electron microscopy analysis showed a cluster of approximately 1-3 nm with a uniform size. Time-resolved fluorescence analysis demonstrated that the red fluorescence was highly stable. Moreover, laser confocal imaging and atomic force microscopy analysis illustrated that a cluster was well distributed in the cell. This cluster exhibited less toxicity in the mortal cell line (COS-7) and high toxicity in the cervical cancer cell line (HeLa). The results demonstrated the conjugation of curcumin into the fluorescent gold cluster as a potential material for anticancer therapy and bioimaging applications.


Assuntos
Antineoplásicos/química , Curcumina/química , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Células COS , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Curcumina/farmacologia , Corantes Fluorescentes/farmacologia , Ouro/farmacologia , Células HeLa , Humanos , Imagem Óptica/métodos , Espectrometria de Fluorescência
7.
Colloids Surf B Biointerfaces ; 160: 1-10, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28910676

RESUMO

Metal-organic frameworks are a novel class of organic-inorganic hybrid polymer with potential applications in bioimaging, drug delivery, and ROS therapy. NH2-MIL-125, which is a titanium-based metal organic framework with a large surface area of 1540m2/g, was synthesized using a hydrothermal method. The material was characterized by powder X-ray diffreaction (PXRD), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM), and N2 isotherm analyses. The size of the polymer was reduced to the nanoscale using a high-frequency sonication process. PEGylation was carried out to improve the stability and bioavailability of the NMOF. The as-synthesized nano-NH2-MIL-125/PEG (NMOF/PEG) exhibited good biocompatibility over the (Cancer) MCF-7 and (Normal) COS-7 cell line. The interaction of NMOF/PEG with the breast cancer cell line (MCF-7) was examined by BIO-TEM analysis and laser confocal imaging. 2',7'-dichlorofluorescin diacetate (DCFDA) analysis confirmed that NMOF/PEG produced free radicals inside the cancer cell line (MCF-7) upon visible light irradiation. NMOF/PEG absorbed a large amount of DOX (20wt.% of DOX) and showed pH, and photosensitive release. This controlled drug delivery was attributed to the presence of NH2, Ti group in MOF and a hydroxyl group in PEG. This combination of chemo- and ROS-therapy showed excellent efficiency in killing cancer MCF-7 cells.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Metálicas/química , Titânio/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Doxorrubicina/química , Doxorrubicina/metabolismo , Humanos , Células MCF-7 , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/química , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA