Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38932475

RESUMO

Aqueous zinc-ion batteries have attracted widespread attention due to their low cost and high safety. Unfortunately, their commercial applications are greatly inhibited by the negative effects of zinc dendrites and side reactions. A solution that utilizes a 3D host can help mitigate these issues. In this paper, we present a 3D host that is composed of an aerogel scaffold with a poly(vinyl alcohol) and MXene structure. The embedded Zn can be densely packed inside the host due to its zincophilic properties. During cycling, the fluorine-based functional groups on the surface of MXene were able to react with the electrolyte to form the ZnF2 solid electrolyte interphase, which can effectively protect the composite anode. As a result, the symmetrical battery was capable of stable cycling for >300 h at a high current density of 10 mA cm-2. More impressively, the assembled full cell retained 93.86% after 800 cycles at a current density of 5 A g-1. This work provides an effective idea for improving the cycling performance of aqueous zinc-ion batteries.

2.
ACS Appl Mater Interfaces ; 16(3): 3311-3324, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38212130

RESUMO

Species transport in thin-film Nafion heavily influences proton-exchange membrane (PEMFC) performance, particularly in low-platinum-loaded cells. Literature suggests that phase-segregated nanostructures in hydrated Nafion thin films can reduce species mobility and increase transport losses in cathode catalyst layers. However, these structures have primarily been observed at silicon-Nafion interfaces rather than at more relevant material (e.g., Pt and carbon black) interfaces. In this work, we use neutron reflectometry and X-ray photoelectron spectroscopy to investigate carbon-supported Nafion thin films. Measurements were taken in humidified environments for Nafion thin films (≈30-80 nm) on four different carbon substrates. Results show a variety of interfacial morphologies in carbon-supported Nafion. Differences in carbon samples' roughness, surface chemistry, and hydrophilicity suggest that thin-film Nafion phase segregation is impacted by multiple substrate characteristics. For instance, hydrophilic substrates with smooth surfaces correlate with a high likelihood of lamellar phase segregation parallel to the substrate. When present, the lamellar structures are less pronounced than those observed at silicon oxide interfaces. Local oscillations in water volume fraction for the lamellae were less severe, and the lamellae were thinner and were not observed when the water was removed, all in contrast to Nafion-silicon interfaces. For hydrophobic and rough samples, phase segregation was more isotropic rather than lamellar. Results suggest that Nafion in PEMFC catalyst layers is less influenced by the interface compared with thin films on silicon. Despite this, our results demonstrate that neutron reflectometry measurements of silicon-Nafion interfaces are valuable for PEMFC performance predictions, as water uptake in the majority Nafion layers (i.e., the uniformly hydrated region beyond the lamellar region) trends similarly with thickness, regardless of support material.

3.
Angew Chem Int Ed Engl ; 63(12): e202315922, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38287420

RESUMO

Breaking the D4h symmetry in the square-planar M-N4 configuration of macrocycle molecular catalysts has witnessed enhanced electrocatalytic activity, but at the expense of electrochemical stability. Herein, we hypothesize that the lability of the active Cu-N3 motifs in the N-confused copper (II) tetraphenylporphyrin (CuNCP) could be overcome by applying pulsed potential electrolysis (PPE) during electrocatalytic carbon dioxide reduction. We find that applying PPE can indeed enhance the CH4 selectivity on CuNCP by 3 folds to reach the partial current density of 170 mA cm-2 at >60 % Faradaic efficiency (FE) in flow cell. However, combined ex situ X-ray diffraction (XRD), transmission electron microscope (TEM), and in situ X-ray absorption spectroscopy (XAS), infrared (IR), Raman, scanning electrochemical microscopy (SECM) characterizations reveal that, in a prolonged time scale, the decomplexation of CuNCP is unavoidable, and the promoted water dissociation under high anodic bias with lowered pH and enriched protons facilitates successive hydrogenation of *CO on the irreversibly reduced Cu nanoparticles, leading to the improved CH4 selectivity. As a key note, this study signifies the adaption of electrolytic protocol to the catalyst structure for tailoring local chemical environment towards efficient CO2 reduction.

4.
Small Methods ; 7(11): e2300731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37566764

RESUMO

Zn electrodeposition mechanism is a cornerstone of dendritic issue exploration in Zn-ion battery. Investigation of the inherent early-stage Zn plating kinetics and its dependence on the reactivity of anode-electrolyte interphase is crucial. Herein, the kinetic evolution of Zn plating on three characteristic substrates is quantified: fresh Zn, commercial Zn foil, and Zn foil with spontaneously generated solid-electrolyte interphase (SEI). Using scanning electrochemical microscopy analysis, the original interphase regulation of Zn deposit orientation and the competitive reaction between Zn deposition and SEI passivation are studied in situ. Furthermore, the SEI layer can suppress the dendrite growth at initial state by guiding the horizontal alignment of Zn flakes and promote Zn plating process. This approach provided a feasible consideration into interphase engineering of various metal anodes.

5.
Adv Mater ; 35(22): e2300084, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929089

RESUMO

Doping is a powerful technique for engineering the electrical properties of organic semiconductors (OSCs), yet efficient n-doping of OSCs remains a central challenge. Herein, the discovery of two organic superbase dopants, namely P2-t-Bu and P4-t-Bu as ultra-efficient n-dopants for OSCs is reported. Typical n-type semiconductors such as N2200 and PC61 BM are shown to experience a significant increase of conductivity upon doping by the two dopants. In particular, the optimized electrical conductivity of P2-t-Bu-doped PC61 BM reaches a record-high value of 2.64 S cm-1 . The polaron generation efficiency of P2-t-Bu-doped in PC61 BM is found to be over 35%, which is 2-3 times higher than that of benchmark n-dopant N-DMBI. In addition, a deprotonation-initiated, nucleophilic-attack-based n-doping mechanism is proposed for the organic superbases, which involves the deprotonation of OSC molecules, the nucleophilic attack of the resulting carbanions on the OSC's π-bonds, and the subsequent n-doping through single electron transfer process between the anionized and neutral OSCs. This work highlights organic superbases as promising n-dopants for OSCs and opens up opportunities to explore and develop highly efficient n-dopants.

6.
Small ; 18(10): e2107163, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35112793

RESUMO

Aqueous Zn-ion batteries (ZIBs) have emerged as a promising energy supply for next-generation wearable electronics, yet they are still impeded by the notorious growth of zinc dendrite and uncontrollable side reaction. While the rational design of electrolyte composition or separator decoration can effectively restrain zinc dendrite growth, synchronously regulating the interfacial electrochemical performance by tackling the physical delamination venture between electrode and electrolyte remains a major obstacle for high-performance wearable aqueous ZIB. Herein, a category of hybrid biogel electrolyte containing carrageenan and wool keratin (CWK) is put forward to regulate the interfacial electrochemistry in aqueous ZIB. Systematic electrochemical kinetics analyses and ex situ scanning electrochemical microscopy (SECM) characterizations achieve comprehensive understanding of the keratin enhanced interfacial Zn2+ redox reaction. Thanks to the keratin triggered selective ion permeability, the as-designed CWK hybrid biogel electrolyte manifests a promoted Zn2+ transference number and excellent reversibility of Zn plating/stripping and outstanding Zn utilization (average Coulombic efficiency ≈98%). More impressively, the CWK hybrid biogel electrolyte also demonstrates cathode side-reaction depression and strengthened interfacial adhesion while assembled into a quasi-solid-state flexible ZIB. This work offers a strategy to synchronously solve concurrent challenges for both of Zn anode and cathode toward realistic wearable aqueous ZIB.


Assuntos
Queratinas , , Animais , Fontes de Energia Elétrica , Eletrólitos , Zinco
7.
Analyst ; 145(7): 2631-2638, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32101184

RESUMO

Interphases formed at battery electrodes are key to enabling energy dense charge storage by acting as protection layers and gatekeeping ion flux into and out of the electrodes. However, our current understanding of these structures and how to control their properties is still limited due to their heterogenous structure, dynamic nature, and lack of analytical techniques to probe their electronic and ionic properties in situ. In this study, we used a multi-functional scanning electrochemical microscopy (SECM) technique based on an amperometric ion-selective mercury disc-well (HgDW) probe for spatially-resolving changes in interfacial Li+ during solid electrolyte interphase (SEI) formation and for tracking its relationship to the electronic passivation of the interphase. We focused on multi-layer graphene (MLG) as a model graphitic system and developed a method for ion-flux mapping based on pulsing the substrate at multiple potentials with distinct behavior (e.g. insertion-deinsertion). By using a pulsed protocol, we captured the localized uptake of Li+ at the forming SEI and during intercalation, creating activity maps along the edge of the MLG electrode. On the other hand, a redox probe showed passivation by the interphase at the same locations, thus enabling correlations between ion and electron transfer. Our analytical method provided direct insight into the interphase formation process and could be used for evaluating dynamic interfacial phenomena and improving future energy storage technologies.

8.
ACS Appl Mater Interfaces ; 12(17): 19393-19401, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32109048

RESUMO

In a conventional lithium-ion battery (LIB), graphite forms the negative electrode or anode. Although Na is considered one of the most attractive alternatives to Li, achieving reversible Na intercalation within graphitic materials under ambient conditions remains a challenge. More efficient carbonaceous anode materials are desired for developing advanced LIBs and beyond Li-ion battery technologies. We hypothesized that two-dimensional materials with distinct surface electronic properties create conditions for ion insertion into few-layer graphene (FLG) anodes. This is because modification of the electrode/electrolyte interface potentially modifies the energetics and mechanisms of ion intercalation in the thin bulk of FLG. Through first-principles calculations; we show that the electronic, structural, and thermodynamic properties of FLG anodes can be fine-tuned by a covalent heteroatom substitution at the uppermost layer of the FLG electrode, or by interfacing FLG with a single-side fluorinated graphene or a Janus-type hydrofluorographene monolayer. When suitably interfaced with the 2D surface modifier, FLG exhibits favorable thermodynamics for the Li+, Na+, and K+ intercalation. Remarkably, the reversible binding of Na within carbon layers becomes thermodynamically allowed, and a large storage capacity can be achieved for the Na intercalated modified FLG anodes. The origin of charge-transfer promoted electronic tunability of modified FLGs is rationalized by various theoretical methods.

9.
Chem Sci ; 12(2): 559-568, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163786

RESUMO

Alkali ion intercalation is fundamental to battery technologies for a wide spectrum of potential applications that permeate our modern lifestyle, including portable electronics, electric vehicles, and the electric grid. In spite of its importance, the Nernstian nature of the charge transfer process describing lithiation of carbon has not been described previously. Here we use the ultrathin few-layer graphene (FLG) with micron-sized grains as a powerful platform for exploring intercalation and co-intercalation mechanisms of alkali ions with high versatility. Using voltammetric and chronoamperometric methods and bolstered by density functional theory (DFT) calculations, we show the kinetically facile co-intercalation of Li+ and K+ within an ultrathin FLG electrode. While changes in the solution concentration of Li+ lead to a displacement of the staging voltammetric signature with characteristic slopes ca. 54-58 mV per decade, modification of the K+/Li+ ratio in the electrolyte leads to distinct shifts in the voltammetric peaks for (de)intercalation, with a changing slope as low as ca. 30 mV per decade. Bulk ion diffusion coefficients in the carbon host, as measured using the potentiometric intermittent titration technique (PITT) were similarly sensitive to solution composition. DFT results showed that co-intercalation of Li+ and K+ within the same layer in FLG can form thermodynamically favorable systems. Calculated binding energies for co-intercalation systems increased with respect to the area of Li+-only domains and decreased with respect to the concentration of -K-Li- phases. While previous studies of co-intercalation on a graphitic anode typically focus on co-intercalation of solvents and one particular alkali ion, this is to the best of our knowledge the first study elucidating the intercalation behavior of two monovalent alkali ions. This study establishes ultrathin graphitic electrodes as an enabling electroanalytical platform to uncover thermodynamic and kinetic processes of ion intercalation with high versatility.

10.
Proc Natl Acad Sci U S A ; 116(22): 10658-10663, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31088971

RESUMO

Ribozymes synthesize proteins in a highly regulated local environment to minimize side reactions caused by various competing species. In contrast, it is challenging to prepare synthetic polypeptides from the polymerization of N-carboxyanhydrides (NCAs) in the presence of water and impurities, which induce monomer degradations and chain terminations, respectively. Inspired by natural protein synthesis, we herein report the preparation of well-defined polypeptides in the presence of competing species, by using a water/dichloromethane biphasic system with macroinitiators anchored at the interface. The impurities are extracted into the aqueous phase in situ, and the localized macroinitiators allow for NCA polymerization at a rate which outpaces water-induced side reactions. Our polymerization strategy streamlines the process from amino acids toward high molecular weight polypeptides with low dispersity by circumventing the tedious NCA purification and the demands for air-free conditions, enabling low-cost, large-scale production of polypeptides that has potential to change the paradigm of polypeptide-based biomaterials.


Assuntos
Aminoácidos/química , Anidridos/química , Peptídeos , Polimerização , Cinética , Cloreto de Metileno/química , Modelos Biológicos , Peso Molecular , Biossíntese Peptídica , Peptídeos/síntese química , Peptídeos/química , Água/química
11.
Chem Sci ; 10(46): 10749-10754, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32055381

RESUMO

Ions at battery interfaces participate in both the solid-electrolyte interphase (SEI) formation and the subsequent energy storage mechanism. However, few in situ methods can directly track interfacial Li+ dynamics. Herein, we report on scanning electrochemical microscopy with Li+ sensitive probes for its in situ, localized tracking during SEI formation and intercalation. We followed the potential-dependent reactivity of edge plane graphite influenced by the interfacial consumption of Li+ by competing processes. Cycling in the SEI formation region revealed reversible ionic processes ascribed to surface redox, as well as irreversible SEI formation. Cycling at more negative potentials activated reversible (de)intercalation. Modeling the ion-sensitive probe response yielded Li+ intercalation rate constants between 10-4 to 10-5 cm s-1. Our studies allow decoupling of charge-transfer steps at complex battery interfaces and create opportunities for interrogating reactivity at individual sites.

13.
J Am Chem Soc ; 140(42): 13599-13603, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30299954

RESUMO

Advancing beyond Li-ion batteries requires translating the beneficial characteristics of Li+ electrodes to attractive, yet incipient, candidates such as those based on K+ intercalation. Here, we use ultrathin few-layer graphene (FLG) electrodes as a model interface to show a dramatic enhancement of K+ intercalation performance through a simple conditioning of the solid-electrolyte interphase (SEI) in a Li+ containing electrolyte. Unlike the substantial plating occurring in K+ containing electrolytes, we found that a Li+ based SEI enabled efficient K+ intercalation with discrete staging-type phase transitions observed via cyclic voltammetry at scan rates up to 100 mVs-1 and confirmed as ion-intercalation processes through in situ Raman spectroscopy. The resulting interface yielded fast charge-discharge rates up to ∼360C (1C is fully discharge in 1 h) and remarkable long-term cycling stability at 10C for 1000 cycles. This SEI promoted the transport of K+ as verified via mass spectrometric depth profiling. This work introduces a convenient strategy for improving the performance of ion intercalation electrodes toward a practical K-ion battery and FLG electrodes as a powerful analytical platform for evaluating fundamental aspects of ion intercalation.

14.
ACS Nano ; 12(3): 2980-2990, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29444401

RESUMO

The electronic properties and extreme thinness of graphene make it an attractive platform for exploring electrochemical interactions across dissimilar environments. Here, we report on the systematic tuning of the electrocatalytic activity toward the oxygen reduction reaction (ORR) via heterostructures formed by graphene modified with a metal underlayer and an adlayer consisting of a molecular catalyst. Systematic voltammetric testing and electrochemical imaging of patterned electrodes allowed us to confidently probe modifications on the ORR mechanisms and overpotential. We found that the surface configuration largely determined the ORR mechanism, with adlayers of porphyrin molecular catalysts displaying a higher activity for the 2e- pathway than the bare basal plane of graphene. Surprisingly, however, the underlayer material contributed substantially to lower the activation potential for the ORR in the order Pt > Au > SiO x, strongly suggesting the involvement of the solution-excluded metal on the reaction. Computational investigations suggest that ORR enhancements originate from permeation of metal d-subshell electrons through the graphene layer. In addition, these physically impermeable but electronically transparent electrodes displayed tolerance to cyanide poisoning and stability toward long-term cycling, highlighting graphene as an effective protection layer of noble metal while enabling electrochemical interactions. This work has implications in the mechanistic understanding of 2D materials and core-shell-type heterostructures for electrocatalytic reactions.

15.
Langmuir ; 33(37): 9455-9463, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28621544

RESUMO

Redox active colloids (RACs) are dispersible, cross-linked polymeric materials that incorporate a high concentration of redox-active motifs, making them attractive for next-generation size-exclusion redox flow batteries. In order to tap into their full potential for energy storage, it is essential to understand their internal charge mobility, capacity, and cyclability. Here we focus on using a combined suite of Raman spectroscopy and scanning electrochemical microscopy (SECM) tools for evaluating three important parameters that govern charge storage in viologen-RACs: their intraparticle redox active concentration, their reduction/oxidation mechanism, and their charge transfer rate. We addressed RACs using SECM imaging and single-particle experiments, from which the intraparticle diffusion and concentration parameters were elucidated. By using Raman spectroscopy coupled to surface interrogation SECM, we further evaluated their reversible redox properties within monolayer films of 80- and 135-nm-sized RACs. Most notably we have confirmed that the concentration and redox mechanisms are essentially unchanged when varying the RAC size. As expected, we see that larger particles inherently require longer times for electrolysis independent of the methodology used for their study. Our simulations further verify the internal concentration of RACs and suggest that their porosity enables solution redox active mediators to penetrate and titrate charge in their interior. The combined methodology presented here sets an important analytical precedent in decoupling the charge storage properties of new bulk materials for polymer batteries starting from probing low-dimensional assemblies and single particles using nano- and spectroelectrochemical approaches.

16.
J Am Chem Soc ; 138(40): 13230-13237, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27629363

RESUMO

Versatile and readily available battery materials compatible with a range of electrode configurations and cell designs are desirable for renewable energy storage. Here we report a promising class of materials based on redox active colloids (RACs) that are inherently modular in their design and overcome challenges faced by small-molecule organic materials for battery applications, such as crossover and chemical/morphological stability. RACs are cross-linked polymer spheres, synthesized with uniform diameters between 80 and 800 nm, and exhibit reversible redox activity as single particles, as monolayer films, and in the form of flowable dispersions. Viologen-based RACs display reversible cycling, accessing up to 99% of their capacity and 99 ± 1% Coulombic efficiency over 50 cycles by bulk electrolysis owing to efficient, long-distance intraparticle charge transfer. Ferrocene-based RACs paired with viologen-based RACs cycled efficiently in a nonaqueous redox flow battery employing a simple size-selective separator, thus demonstrating a possible application that benefits from their colloidal dimensions. The unprecedented versatility in RAC synthetic and electrochemical design opens new avenues for energy storage.

17.
ACS Nano ; 10(10): 9346-9352, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27623233

RESUMO

Detecting metal plasmonic enhancements on the activity of semiconducting photoanodes for water oxidation is often obscured by the inherent electroactivity and instability of the metal in electrolyte. Here, we show that thin TiO2 photoanodes modified by subsurface Al nanodimers (AlNDs) display enhancements that are consistent with plasmon modes. We directly observed enhancements by mapping the oxygen evolution rates on TiO2/AlND patterns using scanning electrochemical microscopy (SECM) while exciting the surface plasmons of the nanodimers. This study highlights the importance of sample configuration for the in situ characterization of metal/photoanode interactions and suggests a route for Al-based plasmonics applied to photoelectrochemistry.

18.
ACS Nano ; 10(4): 4248-57, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26943950

RESUMO

A fundamental question facing electrodes made out of few layers of graphene (FLG) is if they display chemical properties that are different to their bulk graphite counterpart. Here, we show evidence that suggests that lithium ion intercalation on FLG, as measured via stationary voltammetry, shows a strong dependence on the number of layers of graphene that compose the electrode. Despite its extreme thinness and turbostratic structure, Li ion intercalation into FLG still proceeds through a staging process, albeit with different signatures than bulk graphite or multilayer graphene. Single-layer graphene does not show any evidence of ion intercalation, while FLG with four graphene layers displays limited staging peaks, which broaden and increase in number as the layer number increases to six. Despite these mechanistic differences on ion intercalation, the formation of a solid-electrolyte interphase (SEI) was observed on all electrodes. Scanning electrochemical microscopy (SECM) in the feedback mode was used to demonstrate changes in the surface conductivity of FLG during SEI evolution. Observation of ion intercalation on large area FLG was conditioned to the fabrication of "ionic channels" on the electrode. SECM measurements using a recently developed Li-ion sensitive imaging technique evidenced the role of these channels in enabling Li-ion intercalation through localized flux measurements. This work highlights the impact of nanostructure and microstructure on macroscopic electrochemical behavior and provides guidance to the mechanistic control of ion intercalation using graphene, an atomically thin interface where surface and bulk reactivity converge.

19.
Langmuir ; 31(13): 3999-4007, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25780938

RESUMO

We explored the use of single-layer graphene (SLG) obtained by chemical vapor deposition, and transferred to a glass substrate, as a transparent electrode material for use in coupled electrochemical and spectroscopic experiments in nonaqueous media through electrogenerated chemiluminescence (ECL). SLG was used with classical ECL luminophores, rubrene and 9,10-diphenylanthracene, in an inert environment to generate stable electrochemical responses and measure light emission through it. As an electrode material, SLG displayed excellent stability during electrochemical potential stepping and voltammetry in a window that spanned at least from ca. -2.4 to +1.8 V versus SCE in acetonitrile and acetonitrile/benzene. Although the peak splitting between forward and reverse sweeps in voltammetry was larger in comparison to metal electrodes due to in-plane resistance, SLG displayed sufficiently facile electron transfer properties to yield stable voltammetric cycling and ECL. SLG electrodes patterned with poly tetrafluoroethylene permitted the stable generation of radical ions on an SLG microelectrode to be studied through scanning electrochemical microscopy in the generation/collection mode. SLG was able to stably collect radical ions produced by a 50 µm gold tip with up to 96% collection efficiency. The transparency of graphene was used to obtain accurate spectral responses in ECL. While inner filter effects are known to cause a shift in peak emission wavelength of spectroelectrochemical studies, the use of SLG electrodes with detection through the graphene window reduced apparent peak shifts by up to 10 nm in peak wavelength. This work introduces SLG as a virtually transparent, electrochemically active, and chemically stable platform for studying ECL in the radical annihilation mode, where large electrode polarizations could compromise the chemical stability of other existing transparent electrodes.


Assuntos
Eletroquímica/métodos , Eletrodos , Grafite/química , Luminescência
20.
J Am Chem Soc ; 136(46): 16309-16, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25325703

RESUMO

Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E1/2 ∼ -0.7 V vs Ag/Ag(+)(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes-Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li(+)BF4(-)) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for rpoly/rpore (polymer solvodynamic size relative to pore size) values as low as 0.3. The high concentration attainable (>2.0 M) for RAPs in common nonaqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for nonaqueous redox flow batteries based on the enabling concept of size-selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA