Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Environ Int ; 185: 108545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447454

RESUMO

Over the last few years, the cumulative use of antibiotics in healthcare institutions, as well as the rearing of livestock and poultry, has resulted in the accumulation of antibiotic resistance genes (ARGs). This presents a substantial danger to human health worldwide. The characteristics of airborne ARGs, especially those transferred from outdoors to indoors, remains largely unexplored in neighborhoods, even though a majority of human population spends most of their time there. We investigated airborne ARGs and mobile genetic element (MGE, IntI1), plant communities, and airborne microbiota transferred indoors, as well as respiratory disease (RD) prevalence using a combination of metabarcode sequencing, real-time quantitative PCR and questionnaires in 72 neighborhoods in Shanghai. We hypothesized that (i) urbanization regulates ARGs abundance, (ii) the urbanization effect on ARGs varies seasonally, and (iii) land use types are associated with ARGs abundance. Supporting these hypotheses, during the warm season, the abundance of ARGs in peri-urban areas was higher than in urban areas. The abundance of ARGs was also affected by the surrounding land use and plant communities: an increase in the proportion of gray infrastructure (e.g., residential area) around neighborhoods can lead to an increase in some ARGs (mecA, qnrA, ermB and mexD). Additionally, there were variations observed in the relationship between ARGs and bacterial genera in different seasons. Specifically, Stenotrophomonas and Campylobacter were positively correlated with vanA during warm seasons, whereas Pseudomonas, Bacteroides, Treponema and Stenotrophomonas positively correlated with tetX in the cold season. Interstingly, a noteworthy positive correlation was observed between the abundance of vanA and the occurrence of both rhinitis and rhinoconjunctivitis. Taken together, our study underlines the importance of urbanization and season in controlling the indoor transfer of airborne ARGs. Furthermore, we also highlight the augmentation of green-blue infrastructure in urban environments has the potential to mitigate an excess of ARGs.


Assuntos
Genes Bacterianos , Urbanização , Humanos , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos/genética
2.
Se Pu ; 42(2): 131-141, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38374593

RESUMO

Given continuous development in society and the economy, obesity has become a global epidemic, arousing great concern. In addition to genetic and dietary factors, exposure to environmental chemicals is associated with the occurrence and development of obesity. Current research has indicated that some chemicals with endocrine-disrupting effects can affect lipid metabolism in vivo, causing elevated lipid storage. These chemicals are called "environmental obesogens". Synthetic phenolic compounds (SPCs) are widely used in industrial and daily products, such as plastic products, disinfectants, pesticides, food additives, and so on. The exposure routes of SPCs to the human body may include food and water consumption, direct skin contact, etc. Their unintended exposure could cause harmful effects on human health. As a type of endocrine disruptor, SPCs interfere with adipogenesis and lipid metabolism, exhibiting the characteristics of environmental obesogens. Because SPCs have similar phenolic structures, gathering information on their influences on lipid metabolism would be helpful to understand their structure-related effects. In this review, three commonly used research methods for screening environmental obesogens, including in vitro testing for molecular interactions, cell adipogenic differentiation models, and in vivo studies on lipid metabolism, are summarized, and the advantages and disadvantages of these methods are compared and discussed. Based on both in vitro and in vivo data, three types of SPCs, including bisphenol A (BPA) and its analogues, alkylphenols (APs), and synthetic phenolic antioxidants (SPAs), are systematically discussed in terms of their ability to disrupt adipogenesis and lipid metabolism by focusing on adipose and hepatic tissues, among others. Common findings on the effects of these SPCs on adipocyte differentiation, lipid storage, hepatic lipid accumulation, and liver steatosis are described. The underlying toxicological mechanisms are also discussed from the aspects of nuclear receptor transactivation, inflammation and oxidative stress regulation, intestinal microenvironment alteration, epigenetic modification, and some other signaling pathways. Future research to increase public knowledge on the obesogenic effects of emerging chemicals of concern is encouraged.


Assuntos
Disruptores Endócrinos , Metabolismo dos Lipídeos , Humanos , Exposição Ambiental , Obesidade/etiologia , Obesidade/genética , Adipogenia , Disruptores Endócrinos/farmacologia , Compostos Benzidrílicos , Lipídeos
3.
Brain Res Bull ; 208: 110894, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325758

RESUMO

Neutrophil infiltration has been linked to worse clinical outcomes after ischemic stroke. Microglia, a key type of immune-competent cell, engage in cross-talk with the infiltrating immune cells in the inflamed brain area, yet the molecular mechanisms involved remain largely unexplored. In this study, we investigated the mechanisms of how canonical transient receptor potential 1 (TRPC1) modulated neutrophil infiltration in male mouse cerebral ischemia and reperfusion injury (CIRI) models. Our findings revealed a notable upregulation of TRPC1 in microglia within both middle cerebral artery occlusion reperfusion (MCAO/R) and in vitro oxygen-glucose deprivation/regeneration (OGD/R) model. Conditional Trpc1 knockdown in microglia markedly reduced infarct volumes and alleviated neurological deficits. Microglia conditional Trpc1 knockdown mice displayed less neutrophil infiltration in peri-infarct area. Trpc1 knockdown microglia exhibited a reduced primed proinflammatory phenotype with less secretion of CC-Chemokines ligand (CCL) 5 and CCL2 after MCAO/R. Blocking CCL5/2 significantly mitigated neutrophil infiltration in microglia/neutrophil transwell co-culture system upon OGD/R condition. Trpc1 knockdown markedly reduced store-operated calcium entry and nuclear factor of activated T-cells c1 (NFATc1) level in OGD/R treated microglia. Overexpression of Nfatc1 reversed the CCL5/2 reducing effect of Trpc1 knockdown, which is mediated by small interfering RNA in BV2 cells upon OGD/R. Our data indicate that upregulation of TRPC1 in microglia stimulates the production of CCL5/2 through the Ca2+/NFATc1 pathway. Upregulated CCL5/2 leads to an increase in neutrophil infiltration into the brain, thereby aggravating reperfusion injury. Our results demonstrate the importance of TRPC1 in microglia-mediated neuroinflammation and suggest a potential means for reducing CIRI induced neurological injury.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Masculino , Camundongos , Animais , Regulação para Cima , AVC Isquêmico/metabolismo , Microglia/metabolismo , Infiltração de Neutrófilos , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo
4.
Bioresour Technol ; 393: 130108, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040305

RESUMO

This research aims to explore the degradation properties of polyethylene terephthalate (PET) by PET hydrolase (WCCG) in high-temperature composting and its impact on microbial communities. PET degradation, composting parameters and microbial communities were assessed in 220 L sludge composters with PET and WCCG using high-throughput sequencing. Results showed that WCCG addition led to a deceleration of the humification process and a reduction in the relative abundance of thermophilic genera. Potential PET degrading microbiota, e.g. Acinetobacter, Bacillus, were enriched in the plastisphere in the composters where PET reduced by 26 % without WCCG addition. The external introduction of the WCCG enzyme to compost predominantly instigates a chemical reaction with PET, concurently curtailing the proliferation of plastic-degrading bacteria, leading to a 35 % degradation of PET. Both the WCCG enzyme and the microbiota associated with plastic-degradation showed the potential for reducing PET, offering a novel method for mitigating pollution caused by environmental microplastics.


Assuntos
Compostagem , Microbiota , Polietilenotereftalatos , Microplásticos , Plásticos , Hidrolases , Temperatura , Polietileno
5.
J Cereb Blood Flow Metab ; 44(4): 491-507, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38008899

RESUMO

Neutrophils plays a crucial role in acute ischemic brain injury and have emerged as potential treatment targets to mitigate such injuries. Lysine-specific demethylase 4 A (KDM4A), a member of the histone lysine demethylase family of enzymes involved in transcriptional regulation of gene expression, is upregulated during hypoxic events. However, the exact role of KDM4A in the pathological process of ischemic stroke remains largely unexplored. Our findings reveal that there was an upregulation of KDM4A levels in reactive astrocytes within both stroke mouse models and in vitro oxygen-glucose deprivation/regeneration (OGD/R) models. Using a conditional knockout mouse, we observed that astrocytic Kdm4a knockout regulates neutrophil infiltration and alleviates brain injury following middle cerebral artery occlusion reperfusion. Furthermore, Kdm4a deficiency astrocytes displayed lower chemokine C-X-C motif ligand 1 (CXCL1) level upon OGD/R and decreased neutrophil infiltration in a transwell system. Mechanistically, KDM4A, in cooperation with nuclear factor-kappa B (NF-κB), activates Cxcl1 gene expression by demethylating histone H3 lysine 9 trimethylation at Cxcl1 gene promoters in astrocytes upon OGD/R injury. Our findings suggest that astrocyte KDM4A-mediated Cxcl1 activation contributes to neutrophil infiltration via cooperation with NF-κB, and KDM4A in astrocytes may serve as a potential therapeutic target to modulate neutrophil infiltration after stroke.


Assuntos
Isquemia Encefálica , Histona Desmetilases , Traumatismo por Reperfusão , Animais , Camundongos , Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Quimiocinas/metabolismo , Infarto da Artéria Cerebral Média/patologia , Lisina , Camundongos Knockout , Infiltração de Neutrófilos , NF-kappa B/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Histona Desmetilases/metabolismo
6.
Microb Ecol ; 87(1): 2, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008827

RESUMO

Soil microorganisms play important roles in vegetation establishment and soil biogeochemical cycling. Ammodendron bifolium is a dominant sand-fixing (i.e., stabilizing sand dunes) and endangered plant in the Takeermohuer Desert, and the bacterial community associated with this plant rhizosphere is still unclear. In this study, we investigated the composition and diversity of the bacterial community from the A. bifolium rhizosphere and bulk soil at different soil depths (i.e., 0-40 cm, 40-80 cm, 80-120 cm) using culture and high-throughput sequencing methods. We preliminarily analyzed the edaphic factors influencing the structure of bacterial communities. The results showed that the high-salinity Takeermohuer Desert has an oligotrophic environment, while the A. bifolium rhizosphere exhibited a relatively nutrient-rich environment due to higher contents of soil organic matter (SOM) and soil alkaline nitrogen (SAN) than bulk soil. The dominant bacterial groups in the desert were Actinobacteria (39.8%), Proteobacteria (17.4%), Acidobacteria (10.2%), Bacteroidetes (6.3%), Firmicutes (6.3%), Chloroflexi (5.6%), and Planctomycetes (5.0%) at the phylum level. However, the relative abundances of Proteobacteria (20.2%) and Planctomycetes (6.1%) were higher in the rhizosphere, and those of Firmicutes (9.8%) and Chloroflexi (6.9%) were relatively higher in barren bulk soil. A large number of Actinobacteria were detected in all soil samples, of which the most abundant genera were Streptomyces (5.4%) and Actinomadura (8.2%) in the bulk soil and rhizosphere, respectively. The Chao1 and PD_whole_tree indices in the rhizosphere soil were significantly higher than those in the bulk soil at the same soil depth and tended to decrease with increasing soil depth. Co-occurrence network analyses showed that the keystone species in the Takeermohuer Desert were the phyla Actinobacteria, Acidobacteria, Proteobacteria, and Chloroflexi. Furthermore, the major edaphic factors affecting the rhizosphere bacterial community were electrical conductivity (EC), SOM, soil total nitrogen (STN), SAN, and soil available potassium (SAK), while the major edaphic factors affecting the bacterial community in bulk soil were distance and ratio of carbon to nitrogen (C/N). We concluded that the A. bifolium rhizosphere bacterial community is different from that of the nonrhizosphere in composition, structure, diversity, and driving factors, which may improve our understanding of the relationship between plant and bacterial communities and lay a theoretical foundation for A. bifolium species conservation in desert ecosystems.


Assuntos
Ecossistema , Fabaceae , Rizosfera , Bactérias/genética , Proteobactérias , Acidobacteria , Solo/química , Plantas , Nitrogênio , Microbiologia do Solo
7.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889260

RESUMO

A Gram-negative, aerobic, gliding motile, rod-shaped bacterium, designated XAAS-72T, was isolated from the rhizosphere soil of Kalidium foliatum sampled in the Xinjiang Uyghur Autonomous Region, PR China. Cells grew at 4-45 °C, pH 5.0-8.0 and 0-8% NaCl, with optimal growth at 20-30 °C, pH 6.0-7.0 and 1-2 % NaCl. Strain XAAS-72T is closely related to members of the genus Pontibacter, namely Pontibacter korlensis CCTCC AB 206081T (97.6%) and Pontibacter flavimaris ACCC 19859T (97.2 %), and <94.6 % related to other currently described Pontibacter strains. The average nucleotide identity values between XAAS-72T and P. korlensis CCTCC AB 206081T and P. flavimaris ACCC 19859T were 77.9 and 86.9 %, respectively; the corresponding digital DNA-DNA hybridization values were 21.7 and 31.8 %. Menaquinone-7 was the predominant respiratory menaquinone. The polar lipids consisted of phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified glycolipids and five unidentified lipids. The major cellular fatty acids were summed feature 4 (containing iso-C17 : 1 I/anteiso-C17 : 1 B), summed feature 3 (containing C16 : 1 ω7c/C16 : 1 ω6c) and iso-C15 : 0. The genome length of strain XAAS-72T was 5 054 860 bp with a genomic DNA G+C content of 54.5 mol%. The phenotypic and genotypic data suggest that strain XAAS-72T represents a novel species of the genus Pontibacter, for which the name Pontibacter kalidii sp. nov. is proposed. The strain is XAAS-72T (CGMCC 16594T=KCTC 72095T).


Assuntos
Ácidos Graxos , Rizosfera , Ácidos Graxos/química , Cloreto de Sódio , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Filogenia , Microbiologia do Solo , RNA Ribossômico 16S/genética , Vitamina K 2/química
8.
Sci Total Environ ; 904: 167226, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734611

RESUMO

King grass has been recognized as a potential phytoremediation plant species due to its high biomass and resistance to heavy metals (HMs). However, the possible impacts of cadmium (Cd) contamination on rhizocompartments' microbial activities in association with king grass have not been extensively explored. The utilization of 16S rRNA gene and ITS sequencing was carried out to examine alterations in the bacterial and fungal communities in the rhizosphere and rhizoplane of king grass in response to low and high Cd stress. Results demonstrated that both bacterial and fungal communities' diversity and richness were negatively impacted by Cd stress, regardless of its concentration. However, evenness did not exhibit any significant response to either of the concentrations. Additionally, nonmetric multidimensional scaling (NMDS) ordination demonstrated a significant difference (p < 0.001) in microbial communities under different treatments. The abundance of bacterial taxa such as Steroibacter, Nitrospira, Pseudoxanthomonas, Cellvirio, Phenylobacterium, Mycobacterium, Pirellula and Aquicella was adversely affected under Cd stress while Flavobacterium, Gemmata, Thiobacillus and Gemmatimonas showed no prominent response, indicating their resistance to Cd stress. Like that, certain fungal taxa for instance, Cladosporium, Cercophora, Acremonium, Mortierella, Aspergillus, Penicillium, Glomus and Sebacina were also highly reduced by low and high Cd stress. In contrast, Fusarium, Thanatephorus, Botrytis and Curvularia did not show any response to Cd stress. The identified taxa may have a crucial role in the growth of king grass under heavy metal contamination, making them promising candidates for developing bioinoculants to encourage plant performance and phytoremediation capability in HM-contaminated soils.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Cádmio/toxicidade , Poaceae , Biodegradação Ambiental , RNA Ribossômico 16S , Solo , Metais Pesados/toxicidade , Rizosfera , Bactérias , Microbiologia do Solo
9.
Front Microbiol ; 14: 1193940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426011

RESUMO

Introduction: Aquatic ecosystems in floodplains provide homes for a variety of active bacterial populations. However, the coexistence pattern of bacterial communities of water and sediment in these ecosystems is unclear. Methods: In the present study, Illumina Mi-Seq sequencing were to assess bacteria's co-occurrence patterns in the water and sediment of different time dynamics and plant communities of the Yellow River floodplain ecosystem. Results and discussion: The results showed that compared to water, the α-diversity of the bacterial community was way greater in sediment. The bacterial community structure significantly differed between water and sediment, and there was a limited overlap of interactions between the bacterial community of water and sediment. In addition, bacteria in water and sediment coexisting show different temporal shifts and community assembly patterns. The water was selected for specific groups of microorganisms that assemble over time in a non-reproducible and non-random way, whereas the sediment environment was relatively stable, and the bacterial communities were gathered randomly. The depth and plant cover significantly influenced the structure of a bacterial community in the sediment. The bacterial community in sediment formed a more robust network than those in water to cope with external changes. These findings improved our comprehension of the ecological trends of water and sediment bacterium colonies coexisting enhanced the biological barrier function, and the capacity of floodplain ecosystems to provide services and offered support for doing so.

10.
Microb Ecol ; 86(4): 2461-2476, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37301781

RESUMO

Soil microorganisms play important roles in vegetation establishment and soil biogeochemical cycling. Ammodendron bifolium is a dominant sand-fixing and endangered plant in Takeermohuer Desert, and bacterial community associated with this plant rhizosphere is still unclear. In this study, we studied the composition and diversity of bacterial community from A. bifolium rhizosphere and bulk soil at different soil depths (i.e., 0-40 cm, 40-80 cm, 80-120 cm) using traditional bacterial isolation and high-throughput sequencing approaches, and preliminarily analyzed the edaphic factors influencing the structure of bacterial communities. Results showed that Takeermohuer Desert with high salinity has been an oligotrophic environment, while the rhizosphere exhibited eutrophication resulting from high content SOM (soil organic matter) and SAN (soil alkaline nitrogen) compared with bulk soil. The dominant bacterial groups in the desert were Actinobacteria (39.8%), Proteobacteria (17.4%), Acidobacteria (10.2%), Bacteroidetes (6.3%), Firmicutes (6.3%), Chloroflexi (5.6%), and Planctomycetes (5.0%) at the phyla level. However, the relative abundances of Proteobacteria (20.2%) and Planctomycetes (6.1%) were higher in eutrophic rhizosphere, and Firmicutes (9.8%) and Chloroflexi (6.9%) relatively higher in barren bulk soil. A large number of Actinobacteria were detected in all soil samples, of which the most abundant genus was Streptomyces (5.4%) and Actinomadura (8.2%) in the bulk soil and rhizosphere, respectively. The Chao1 and PD indexes in rhizosphere were significantly higher than those in bulk soil at the same soil depth, and tended to decrease with increasing soil depth. Co-occurrence network analyses showed that the keystone species in Takeermohuer Desert were Actinobacteria, Acidobacteria, Proteobacteria, and Chlorofexi. Furthermore, the major environmental factors affecting rhizosphere bacterial community were EC (electrical conductivity), SOM, STN (soil total nitrogen), SAN, and SAK (soil available potassium), while bulk soil were distance and C/N (STC/STN). We concluded that A. bifolium rhizosphere bacterial community is different from non-rhizosphere in composition, distribution, and environmental influencing factors, which will have important significances for understanding their ecological functions and maintaining biodiversity.


Assuntos
Fabaceae , Rizosfera , Bactérias , Proteobactérias , Acidobacteria , Solo/química , Nitrogênio , Microbiologia do Solo
11.
J Hazard Mater ; 457: 131752, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290353

RESUMO

Microorganisms in the rhizosphere are crucial allies for plant stress tolerance. Recent research suggests that by interacting with the rhizosphere microbiome, microorganisms can aid in the revegetation of soils contaminated with heavy metal(loid)s (HMs). However, it is unknown that how Piriformospora indica influences the rhizosphere microbiome to mitigate arsenic-toxicity in arsenic-enriched environments. Artemisia annua plants were grown in the presence or absence of P. indica and spiked with low (50) and high (150 µmol/L) concentrations of arsenic (As). After inoculation with P. indica, fresh weight increased by 37.7% and 10% in control and high concentration treated plants, respectively. Transmission electron microscopy showed that cellular organelles were severely damaged by As and even disappeared under high concentration. Furthermore, As was mostly accumulated by 5.9 and 18.1 mg/kg dry weight in the roots of inoculated plants treated with low and high concentrations of As, respectively. Additionally, 16 S and ITS rRNA gene sequencing were applied to analyze the rhizosphere microbial community structure of A. annua under different treatments. A significant difference was observed in microbial community structure under different treatments as revealed by non-metric multidimensional scaling ordination. The bacterial and fungal richness and diversity in the rhizosphere of inoculated plants were actively balanced and regulated by P. indica co-cultivation. Lysobacter and Steroidobacter were found to be the As-resistant bacterial genera. We conclude that P. indica inoculation could alter rhizosphere microecology, thereby mitigating As-toxicity without harming the environment.


Assuntos
Arsênio , Artemisia annua , Microbiota , Arsênio/toxicidade , Artemisia annua/genética , Artemisia annua/microbiologia , Raízes de Plantas/microbiologia , Bactérias , Rizosfera , Microbiologia do Solo
12.
J Hazard Mater ; 457: 131862, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329597

RESUMO

Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.


Assuntos
Brassica napus , Melatonina , Poluentes do Solo , Cádmio/metabolismo , Melatonina/farmacologia , Brassica napus/metabolismo , Biodegradação Ambiental , Solo , Antioxidantes/metabolismo , Poluentes do Solo/metabolismo
13.
Shanghai Kou Qiang Yi Xue ; 32(2): 188-192, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37154002

RESUMO

PURPOSE: To evaluate the effect of combination of auxiliary irrigation technology and root canal irrigation solution in the treatment of chronic apical periodontitis with fistula, and try to seek a more effective and minimally invasive therapeutic strategy. METHODS: One hundred and fifty patients with fistulous chronic apical periodontitis who were diagnosed in Hefei Stomatological Hospital from January 2021 to January 2022 were randomly divided into 6 groups, 25 cases in each group. The 6 groups were as follows, group A: 0.5%NaOCl +ultrasonically activated irrigation; Group B: 1.0%NaOCl+ultrasonically activated irrigation; Group C: 2.0%CHX+ultrasonically activated irrigation; Group D: 0.5%NaOCl+sonic activation; Group E: 1.0%NaOCl+sonic activation; Group F: 2.0%CHX+sonic activation. The fistula healing time, treatment effect and postoperative pain were observed in each group. The data were analyzed with SPSS 20.0 software package. RESULTS: In terms of fistula healing, the 10-day fistula healing rate of group E and group F was higher than that of group A and group D,and the difference was statistically significant(P<0.05); but there was no significant difference between group E and group F (P>0.05). The effective rate at 1 month after operation in group A was lower, and the difference was significant (P<0.05). In terms of postoperative pain, the VAS score of group A was lower than that of group E and group F at all time points, and the difference was statistically significant(P<0.05). CONCLUSIONS: In the treatment of chronic apical periodontitis with fistula, 1.0% NaOCl or 2.0% CHX combined with ultrasonically activated irrigation or sonic activation obtain a better short-term effect,of which the sonic activation group can also obtain early healing of the fistula, but the incidence of postoperative pain is higher when sonic activation is used.


Assuntos
Fístula , Periodontite Periapical , Irrigantes do Canal Radicular , Hipoclorito de Sódio , Irrigação Terapêutica , Humanos , Periodontite Periapical/diagnóstico por imagem , Periodontite Periapical/terapia , Dor Pós-Operatória , Irrigantes do Canal Radicular/uso terapêutico , Hipoclorito de Sódio/uso terapêutico
14.
Genes (Basel) ; 14(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37107579

RESUMO

Identifying alleles associated with adaptation to new environments will advance our understanding of evolution from the molecular level. Previous studies have found that the Populus davidiana southwest population in East Asia has differentiated from other populations in the range. We aimed to evaluate the contributions of the ancestral-state bases (ASBs) relative to derived bases (DBs) in the local adaptation of P. davidiana in the Yunnan-Guizhou Plateau from a quantitative perspective using whole-genome re-sequencing data from 90 P. davidiana samples from three regions across the species range. Our results showed that the uplift of the Qinghai-Tibet Plateau during the Neogene and associated climate fluctuations during the Middle Pleistocene were likely an important factor in the early divergence of P. davidiana. Highly differentiated genomic regions between populations were inferred to have undergone strong linked natural selection, and ASBs are the chief means by which populations of P. davidiana adapt to novel environmental conditions; however, when adapting to regions with high environmental differences relative to the ancestral range, the proportion of DBs was significantly higher than that of background regions, as ASBs are insufficient to cope with these environments. Finally, a number of genes were identified in the outlier region.


Assuntos
Populus , Populus/genética , Filogenia , China , Genômica , Tibet
15.
Data Brief ; 47: 109003, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36915639

RESUMO

The metagenomic data presented in this article are related to the published research of "A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children" This database contains 16S ribosomal RNA (rRNA) metagenomics of sandbox sand and skin and gut microbiota of children in the intervention and placebo daycares. In intervention daycares, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil. In placebo daycares, children were exposed to visually similar as in intervention daycares, but microbially poor sand colored with peat. Sand, skin and gut metagenomics were analyzed at baseline and after 14 and 28 days of intervention by high throughput sequencing of bacterial 16S rRNA gene on the Illumina MiSeq platform. This dataset shows how skin bacterial community composition, including classes Gammaproteobacteria and Bacilli, changed, and how the relative abundance of over 30 bacterial genera shifted on the skin of children in the intervention treatment, while no shifts occurred in the placebo group.

16.
Acta Trop ; 241: 106897, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931335

RESUMO

Trichinellosis is a major zoonotic parasitosis which is a vital risk to meat food safety. It is requisite to exploit new strategy to interdict food animal Trichinella infection and to obliterate Trichinella from food animals to ensure meat safety. Mannose is an oligosaccharide that specifically binds to the carbohydrate-recognition domain of C-type lectin; it has many physiological functions including reliving inflammation and regulating immune reaction. The purpose of this study was to investigate the suppressive role of mannose on T. spiralis larval invasion and infection, its effect on intestinal and muscle inflammation, and immune responses after challenge. The results showed that compared to the saline-treated infected mice, the mannose-treated infected mice had less intestinal adult and muscle worm burdens, mild inflammation of intestine and muscle of infected mice. The levels of specific anti-Trichinella IgG (IgG1/IgG2a), IgA and sIgA in mannose-treated infected mice were obviously inferior to saline-treated infected mice (P < 0.01). Furthermore, the levels of two cytokines (IFN-γ and IL-4) in mannose-treated infected mice were also significantly lower than the saline-treated infected mice (P < 0.01). The protective effect of the mannose against Trichinella infection might be not related to specific antibody and cellular immune responses. The above results demonstrated that mannose could be considered as a novel adjuvant therapeutic agent for anti-Trichinella drugs to block larval invasion at early stage of Trichinella infection.


Assuntos
Trichinella spiralis , Triquinelose , Camundongos , Animais , Manose/farmacologia , Triquinelose/tratamento farmacológico , Músculos , Imunoglobulina G , Inflamação/tratamento farmacológico , Intestinos , Camundongos Endogâmicos BALB C
17.
Infect Immun ; 91(4): e0038222, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36939354

RESUMO

Trichinellosis is an important foodborne zoonosis, and no effective treatments are yet available. Nod-like receptor (NLR) plays a critical role in the host response against nematodes. Therefore, we aimed to explore the role of the NLRP3 inflammasome (NLRP3) during the adult, migrating, and encysted stages of Trichinella spiralis infection. The mice were treated with the specific NLRP3 inhibitor MCC950 after inoculation with T. spiralis. Then, the role that NLRP3 plays during T. spiralis infection of mice was evaluated using enzyme-linked immunosorbent assay (ELISA), Western blotting, flow cytometry, histopathological evaluation, bone marrow-derived macrophage (BMDM) stimulation, and immunofluorescence. The in vivo results showed that NLRP3 enhanced the Th1 immune response in the adult and migrating stages and weakened the Th2 immune response in the encysted stage. NLRP3 promoted the release of proinflammatory factors (interferon gamma [IFN-γ]) and suppressed the release of anti-inflammatory factors (interleukin 4 [IL-4]). Pathological changes were also improved in the absence of NLRP3 in mice during T. spiralis infection. Importantly, a significant reduction in adult worm burden and muscle larvae burden at 7 and 35 days postinfection was observed in mice treated with the specific NLRP3 inhibitor MCC950. In vitro, we first demonstrated that NLRP3 in macrophages can be activated by T. spiralis proteins and promotes IL-1ß and IL-18 release. This study revealed that NLRP3 is involved in the host response to T. spiralis infection and that targeted inhibition of NLRP3 enhanced the Th2 response and accelerated T. spiralis expulsion. These findings may help in the development of protocols for controlling trichinellosis.


Assuntos
Trichinella spiralis , Triquinelose , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Antígenos de Helmintos , Camundongos Endogâmicos BALB C
18.
Org Lett ; 25(10): 1711-1716, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36892283

RESUMO

Herein, we described a highly regio- and enantioselective Friedel-Crafts alkylation of aniline derivatives with in situ generated ortho-quinone methides enabled by chiral phosphoric acid, furnishing a wide range of enantioenriched triarylmethanes bearing three similar benzene rings in high yields (up to 98%) with excellent stereoselectivities (up to 98% ee). Furthermore, the large-scale reactions and diversified transformations of product demonstrate the practicality of the protocol. Density functional theory calculations elucidate the origin of the enantioselectivity.

19.
World J Gastrointest Oncol ; 15(1): 69-75, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36684044

RESUMO

Gastric cancer (GC) is a malignant tumor originating from the gastric epithelium, and its incidence and mortality rates rank third among all malignant tumors worldwide. It is also one of the most common cancers in China and is treated predominantly by Western medicine in clinical practice. However, with the advancements in medical technology and informatics, the values of traditional Chinese medicine (TCM) in preventing and treating GC and improving prognosis have increasingly been recognized. According to TCM, clinical manifestations of GC can be divided into Yege (dysphagia), regurgitation, stomach pain, and Zhengxia (abdominal mass). Due to the unbalanced distribution of health care resources in China, most GC patients already have progressive or advanced-stage disease at the first diagnosis. As a result, most GC patients have poor physical function, and surgery or chemotherapy alone will aggravate the impairment to the immune function and seriously affect the quality of life. In contrast, TCM therapies have shown promising efficacy in the management of these patients. Here we review the role of the integrated TCM and Western medicine in treating advanced GC.

20.
J Pharm Anal ; 13(11): 1309-1325, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38174113

RESUMO

The canonical transient receptor potential channel (TRPC) proteins form Ca2+-permeable cation channels that are involved in various heart diseases. However, the roles of specific TRPC proteins in myocardial ischemia/reperfusion (I/R) injury remain poorly understood. We observed that TRPC1 and TRPC6 were highly expressed in the area at risk (AAR) in a coronary artery ligation induced I/R model. Trpc1-/- mice exhibited improved cardiac function, lower serum Troponin T and serum creatine kinase level, smaller infarct volume, less fibrotic scars, and fewer apoptotic cells after myocardial-I/R than wild-type or Trpc6-/- mice. Cardiomyocyte-specific knockdown of Trpc1 using adeno-associated virus 9 mitigated myocardial I/R injury. Furthermore, Trpc1 deficiency protected adult mouse ventricular myocytes (AMVMs) and HL-1 cells from death during hypoxia/reoxygenation (H/R) injury. RNA-sequencing-based transcriptome analysis revealed differential expression of genes related to reactive oxygen species (ROS) generation in Trpc1-/- cardiomyocytes. Among these genes, oxoglutarate dehydrogenase-like (Ogdhl) was markedly downregulated. Moreover, Trpc1 deficiency impaired the calcineurin (CaN)/nuclear factor-kappa B (NF-κB) signaling pathway in AMVMs. Suppression of this pathway inhibited Ogdhl upregulation and ROS generation in HL-1 cells under H/R conditions. Chromatin immunoprecipitation assays confirmed NF-κB binding to the Ogdhl promoter. The cardioprotective effect of Trpc1 deficiency was canceled out by overexpression of NF-κB and Ogdhl in cardiomyocytes. In conclusion, our findings reveal that TRPC1 is upregulated in the AAR following myocardial I/R, leading to increased Ca2+ influx into associated cardiomyocytes. Subsequently, this upregulates Ogdhl expression through the CaN/NF-κB signaling pathway, ultimately exacerbating ROS production and aggravating myocardial I/R injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA