Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339670

RESUMO

The continuous monitoring of soil water content is commonly carried out using low-frequency capacitance sensors that require a site-specific calibration to relate sensor readings to apparent dielectric bulk permittivity (Kb) and soil water content (θ). In fine-textured soils, the conversion of Kb to θ is still challenging due to temperature effects on the bound water fraction associated with clay mineral surfaces, which is disregarded in factory calibrations. Here, a multi-point calibration approach accounts for temperature effects on two soils with medium to high clay content. A calibration strategy was developed using repacked soil samples in which the Kb-θ relationship was determined for temperature (T) steps from 10 to 40 °C. This approach was tested using the GS3 and TEROS-12 sensors (METER Group, Inc. Pullman, WA, USA; formerly Decagon Devices). Kb is influenced by T in both soils with contrasting T-Kb relationships. The measured data were fitted using a linear function θ = aKb + b with temperature-dependent coefficients a and b. The slope, a(T), and intercept, b(T), of the loam soil were different from the ones of the clay soil. The consideration of a temperature correction resulted in low RMSE values, ranging from 0.007 to 0.033 cm3 cm-3, which were lower than the RMSE values obtained from factory calibration (0.046 to 0.11 cm3 cm-3). However, each experiment was replicated only twice using two different sensors. Sensor-to-sensor variability effects were thus ignored in this study and will be systematically investigated in a future study. Finally, the applicability of the proposed calibration method was tested at two experimental sites. The spatial-average θ from a network of GS3 sensors based on the new calibration fairly agreed with the independent area-wide θ from the Cosmic Ray Neutron Sensor (CRNS). This study provided a temperature-corrected calibration to increase the accuracy of commercial sensors, especially under dry conditions, at two experimental sites.

2.
Sensors (Basel) ; 19(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683890

RESUMO

Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.

3.
Water Resour Res ; 51(6): 3837-3866, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-26900183

RESUMO

A review of the emergence and development of hydrogeophysicsOutline of emerging techniques in hydrogeophysicsPresentation of future opportunities in hydrogeophysics.

4.
Science ; 331(6022): 1265; author reply 1265, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21393526

RESUMO

Mahecha et al. (Reports, 13 August 2010, p. 838) estimated the temperature sensitivity of ecosystem respiration (Q(10)) and showed that temperature sensitivity and its site-to-site variability are lower than previously reported. We demonstrate that their Q(10) value of 1.4 is an underestimate if interpreted as the averaged sensitivities of all ecosystem components, because fast temperature fluctuations penetrate poorly into the soil.


Assuntos
Biomassa , Respiração Celular , Ecossistema , Consumo de Oxigênio , Solo , Temperatura , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA