Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(1): 92-98, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542330

RESUMO

Multiphoton excitation of molecular oxygen in the 392-408 nm region is studied using a tunable femtosecond laser coupled with a double velocity map imaging photoelectron-photoion coincidence spectrometer. The laser intensity is held at ≤∼1 TW/cm2 to ensure excitation in the perturbative regime, where the possibility of resonance enhanced multiphoton ionization (REMPI) can be investigated. O2+ production is found to be resonance enhanced around 400 nm via three-photon excitation to the e'3Δu(v = 0) state, similar to results from REMPI studies using nanosecond dye lasers. O+ production reaches 7% of the total ion yield around 405 nm due to two processes: autoionization following five-photon excitation of O2, producing O2+(X(v)) in a wide range of vibrational states followed by two- or three-photon dissociation, or six-photon excitation to a superexcited O2** state followed by neutral dissociation and subsequent ionization of the electronically excited O atom. Coincidence detection is shown to be crucial in identifying these competing pathways.

2.
J Phys Chem A ; 125(41): 9060-9064, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34633817

RESUMO

Coincidence electron-cation imaging is used to characterize the multiphoton ionization of O2 via the v = 4,5 levels of the 3s(3Πg) Rydberg state. A tunable 100 fs laser beam operating in the 271-263 nm region is found to cause a nonresonant ionization across this wavelength range, with an additional resonant ionization channel only observed when tuned to the 3Πg(v = 5) level. A distinct 3s → p wave character is observed in the photoelectron angular distribution for the v = 5 channel when on resonance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA