Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134109, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547751

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.


Assuntos
Biodegradação Ambiental , Células Imobilizadas , Hidrocarbonetos Policíclicos Aromáticos , Rhodococcus , Tensoativos , Peixe-Zebra , Rhodococcus/metabolismo , Tensoativos/toxicidade , Tensoativos/química , Tensoativos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Animais , Células Imobilizadas/metabolismo , Polissorbatos/toxicidade , Polissorbatos/química , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Poluentes Ambientais/química , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Fenantrenos/química , Embrião não Mamífero/efeitos dos fármacos
2.
Biodegradation ; 34(5): 461-475, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329399

RESUMO

The degradation of the prevalent environmental contaminants benzene, toluene, ethylbenzene, and xylenes (BTEX) along with a common co-contaminant methyl tert-butyl ether (MTBE) by Rhodococcus rhodochrous ATCC Strain 21198 was investigated. The ability of 21198 to degrade these contaminants individually and in mixtures was evaluated with resting cells grown on isobutane, 1-butanol, and 2-butanol. Growth of 21198 in the presence of BTEX and MTBE was also studied to determine the growth substrate that best supports simultaneous microbial growth and contaminants degradation. Cells grown on isobutane, 1-butanol, and 2-butanol were all capable of degrading the contaminants, with isobutane grown cells exhibiting the most rapid degradation rates and 1-butanol grown cells exhibiting the slowest. However, in conditions where BTEX and MTBE were present during microbial growth, 1-butanol was determined to be an effective substrate for supporting concurrent growth and contaminant degradation. Contaminant degradation was found to be a combination of metabolic and cometabolic processes. Evidence for growth of 21198 on benzene and toluene is presented along with a possible transformation pathway. MTBE was cometabolically transformed to tertiary butyl alcohol, which was also observed to be transformed by 21198. This work demonstrates the possible utility of primary and secondary alcohols to support biodegradation of monoaromatic hydrocarbons and MTBE. Furthermore, the utility of 21198 for bioremediation applications has been expanded to include BTEX and MTBE.


Assuntos
Benzeno , Éteres Metílicos , Benzeno/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo , 1-Butanol , Derivados de Benzeno/metabolismo , Éteres Metílicos/metabolismo , Biodegradação Ambiental
3.
Chemosphere ; 316: 137771, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36621684

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants released into the environment from both natural and anthropogenic sources that are associated with carcinogenic, mutagenic, and teratogenic health effects. Many remediation strategies for the treatment of PAH contaminated material, including bioremediation, can lead to the formation of toxic transformation products. Analytical techniques for PAHs and PAH transformation products often require extensive sample preparation including solvent extraction and concentration, chromatographic separation, and mass spectrometry to identify and quantify compounds of interest. Excitation-emission matrix (EEM) fluorescent spectroscopy paired with parallel factor analysis (PARAFAC) is an approach for analyzing PAHs that eliminates the need for extensive sample preparation and separation techniques before analysis. However, this technique has rarely been applied to monitoring PAH biotransformation and formation of PAH metabolites. The objectives of this research were to compare an established targeted analytical method to two-dimensional fluorescent spectroscopy and combined EEM-PARAFAC methods to monitor phenanthrene degradation by a bacterial pure culture, Mycobacterium Strain ELW1, identify and quantify phenanthrene transformation products, and derive kinetic constants for phenanthrene degradation and metabolite formation. Both phenanthrene and its primary transformation product, trans-9,10-dihydroxy-9,10-dihydrophenanthrene, were identified and quantified with the EEM-PARAFAC method. The value of the EEM-PARAFAC method was demonstrated in the superiority of sensitivity and accuracy of quantification to two-dimensional fluorescent spectroscopy. Quantification of targets and derivation of kinetic constants using the EEM-PARAFAC method were validated with an established gas chromatography-mass spectrometry (GC-MS) method. To the authors' knowledge, this is the first study to use an EEM-PARAFAC method to monitor, identify, and quantify both PAH biodegradation and PAH metabolite formation by a bacterial pure culture.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espectrometria de Fluorescência/métodos , Análise Fatorial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA