Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892512

RESUMO

Men are diagnosed with type 2 diabetes at lower body mass indexes than women; the role of skeletal muscle in this sex difference is poorly understood. Type 2 diabetes impacts skeletal muscle, particularly in females who demonstrate a lower oxidative capacity compared to males. To address mechanistic differences underlying this sex disparity, we investigated skeletal muscle mitochondrial respiration in female and male rats in response to chronic high-fat, high-sugar (HFHS) diet consumption. Four-week-old Wistar Rats were fed a standard chow or HFHS diet for 14 weeks to identify sex-specific adaptations in mitochondrial respirometry and characteristics, transcriptional patterns, and protein profiles. Fat mass was greater with the HFHS diet in both sexes when controlled for body mass (p < 0.0001). Blood glucose and insulin resistance were greater in males (p = 0.01) and HFHS-fed rats (p < 0.001). HFHS-fed males had higher mitochondrial respiration compared with females (p < 0.01 sex/diet interaction). No evidence of a difference by sex or diet was found for mitochondrial synthesis, dynamics, or quality to support the mitochondrial respiration sex/diet interaction. However, transcriptomic analyses indicate sex differences in nutrient handling. Sex-specific differences occurred in PI3K/AKT signaling, PPARα/RXRα, and triacylglycerol degradation. These findings may provide insight into the clinical sex differences in body mass index threshold for diabetes development and tissue-specific progression of insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Ratos , Feminino , Masculino , Animais , Sacarose/metabolismo , Resistência à Insulina/fisiologia , Caracteres Sexuais , Ratos Wistar , Gorduras na Dieta/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/metabolismo , Insulina
2.
Planta Med ; 88(9-10): 735-744, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777366

RESUMO

Diabetes is a life-threatening and debilitating disease with pathological hallmarks, including glucose intolerance and insulin resistance. Plant compounds are a source of novel and effective therapeutics, and the flavonoid (-)-epicatechin, common to popular foods worldwide, has been shown to improve carbohydrate metabolism in both clinical studies and preclinical models. We hypothesized that (-)-epicatechin would alleviate thermoneutral housing-induced glucose intolerance. Male rats were housed at either thermoneutral (30 °C) or room temperature (24 °C) for 16 weeks and gavaged with either 1 mg/kg body weight or vehicle for the last 15 days before sacrifice. Rats housed at thermoneutrality had a significantly elevated serum glucose area under the curve (p < 0.05) and reduced glucose-mediated insulin secretion. In contrast, rats at thermoneutrality treated with (-)-epicatechin had improved glucose tolerance and increased insulin secretion (p < 0.05). Insulin tolerance tests revealed no differences in insulin sensitivity in any of the four groups. Pancreatic immunohistochemistry staining showed significantly greater islet insulin positive cells in animals housed at thermoneutrality. In conclusion, (-)-epicatechin improved carbohydrate tolerance via increased insulin secretion in response to glucose challenge without a change in insulin sensitivity.


Assuntos
Catequina , Intolerância à Glucose , Resistência à Insulina , Animais , Glicemia/metabolismo , Catequina/farmacologia , Glucose/farmacologia , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/tratamento farmacológico , Habitação , Insulina , Resistência à Insulina/fisiologia , Ratos
3.
Nutrients ; 14(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35268072

RESUMO

Cardiovascular disease (CVD) is a global health concern. Vascular dysfunction is an aspect of CVD, and novel treatments targeting vascular physiology are necessary. In the endothelium, eNOS regulates vasodilation and mitochondrial function; both are disrupted in CVD. (−)-Epicatechin, a botanical compound known for its vasodilatory, eNOS, and mitochondrial-stimulating properties, is a potential therapy in those with CVD. We hypothesized that (−)-epicatechin would support eNOS activity and mitochondrial respiration, leading to improved vasoreactivity in a thermoneutral-derived rat model of vascular dysfunction. We housed Wistar rats at room temperature or in thermoneutral conditions for a total of 16 week and treated them with 1mg/kg body weight (−)-epicatechin for 15 day. Vasoreactivity, eNOS activity, and mitochondrial respiration were measured, in addition to the protein expression of upstream cellular signaling molecules including AMPK and CaMKII. We observed a significant improvement of vasodilation in those housed in thermoneutrality and treated with (−)-epicatechin (p < 0.05), as well as dampened mitochondrial respiration (p < 0.05). AMPK and CaMKIIα and ß expression were lessened with (−)-epicatechin treatment in those housed at thermoneutrality (p < 0.05). The opposite was observed with animals housed at room temperature supplemented with (−)-epicatechin. These data illustrate a context-dependent vascular response to (−)-epicatechin, a candidate for CVD therapeutic development.


Assuntos
Catequina , Animais , Catequina/metabolismo , Catequina/farmacologia , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Respiração , Transdução de Sinais
4.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410380

RESUMO

Breast cancer survivors treated with tamoxifen and aromatase inhibitors report weight gain and have an elevated risk of type 2 diabetes, especially if they have obesity. These patient experiences are inconsistent with, preclinical studies using high doses of tamoxifen which reported acute weight loss. We investigated the impact of breast cancer endocrine therapies in a preclinical model of obesity and in a small group of breast adipose tissue samples from women taking tamoxifen to understand the clinical findings. Mature female mice were housed at thermoneutrality and fed either a low-fat/low-sucrose (LFLS) or a high-fat/high-sucrose (HFHS) diet. Consistent with the high expression of Esr1 observed in mesenchymal stem cells from adipose tissue, endocrine therapy was associated with adipose accumulation and more preadipocytes compared with estrogen-treated control mice but resulted in fewer adipocyte progenitors only in the context of HFHS. Analysis of subcutaneous adipose stromal cells revealed diet- and treatment-dependent effects of endocrine therapies on various cell types and genes, illustrating the complexity of adipose tissue estrogen receptor signaling. Breast cancer therapies supported adipocyte hypertrophy and associated with hepatic steatosis, hyperinsulinemia, and glucose intolerance, particularly in obese females. Current tamoxifen use associated with larger breast adipocyte diameter only in women with obesity. Our translational studies suggest that endocrine therapies may disrupt adipocyte progenitors and support adipocyte hypertrophy, potentially leading to ectopic lipid deposition that may be linked to a greater type 2 diabetes risk. Monitoring glucose tolerance and potential interventions that target insulin action should be considered for some women receiving life-saving endocrine therapies for breast cancer.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Antineoplásicos Hormonais/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Obesidade , Aumento de Peso/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Inibidores da Aromatase/administração & dosagem , Inibidores da Aromatase/farmacologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/complicações , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia , Magreza/complicações , Magreza/tratamento farmacológico , Magreza/metabolismo , Magreza/patologia
5.
Oxid Med Cell Longev ; 2020: 6392629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587663

RESUMO

Diabetes mellitus affects 451 million people worldwide, and people with diabetes are 3-5 times more likely to develop cardiovascular disease. In vascular tissue, mitochondrial function is important for vasoreactivity. Diabetes-mediated generation of excess reactive oxygen species (ROS) may contribute to vascular dysfunction via damage to mitochondria and regulation of endothelial nitric oxide synthase (eNOS). We have identified (-)-epicatechin (EPICAT), a plant compound and known vasodilator, as a potential therapy. We hypothesized that mitochondrial ROS in cells treated with antimycin A (AA, a compound targeting mitochondrial complex III) or high glucose (HG, global perturbation) could be normalized by EPICAT, and correlate with improved mitochondrial dynamics and cellular signaling. Human umbilical vein endothelial cells (HUVEC) were treated with HG, AA, and/or 0.1 or 1.0 µM of EPICAT. Mitochondrial and cellular superoxide, mitochondrial respiration, and cellular signaling upstream of mitochondrial function were assessed. EPICAT at 1.0 µM significantly attenuated mitochondrial superoxide in HG-treated cells. At 0.1 µM, EPICAT nonsignificantly increased mitochondrial respiration, agreeing with previous reports. EPICAT significantly increased complex I expression in AA-treated cells, and 1.0 µM EPICAT significantly decreased mitochondrial complex V expression in HG-treated cells. No significant effects were seen on either AMPK or eNOS expression. Our study suggests that EPICAT is useful in mitigating moderate ROS concentrations from a global perturbation and may modulate mitochondrial complex activity. Our data illustrate that EPICAT acts in the cell in a dose-dependent manner, demonstrating hormesis.


Assuntos
Catequina/farmacologia , Endotélio Vascular/patologia , Mitocôndrias/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Antimicina A/farmacologia , Respiração Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Endotélio Vascular/efeitos dos fármacos , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Superóxidos/metabolismo
6.
Physiol Rep ; 6(13): e13754, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29984491

RESUMO

Cardiorespiratory fitness (CRF) inversely predicts cardiovascular (CV) mortality and CRF is impaired in people with type 2 diabetes (T2D). Aerobic exercise training (ET) improves CRF and is associated with decreased risk of premature death in healthy and diseased populations. Understanding the mechanisms contributing to ET adaptation may identify targets for reducing CV mortality of relevance to people with T2D. The antihyperglycemic hormone glucagon-like peptide-1 (GLP-1) influences many of the same pathways as exercise and may contribute to CV adaptation to ET. We hypothesized that GLP-1 is necessary for adaptation to ET. Twelve-week-old male Wistar rats were randomized (n = 8-12/group) to receive PBS or GLP-1 receptor antagonist (exendin 9-39 (Ex(9-39)) via osmotic pump for 4 weeks ± ET. CRF was greater with ET (P < 0.01). Ex(9-39) treatment blunted CRF in both sedentary and ET rats (P < 0.001). Ex(9-39) attenuated acetylcholine-mediated vasodilation, while this response was maintained with Ex(9-39)+ET (P = 0.04). Aortic stiffness was greater with Ex(9-39) (P = 0.057) and was made worse when Ex(9-39) was combined with ET (P = 0.004). Ex vivo aortic vasoconstriction with potassium and phenylephrine was lower with Ex(9-39) (P < 0.0001). Carotid strain improved with PBS + ET but did not change in the Ex(9-39) rats with ET (P < 0.0001). Left ventricular mitochondrial respiration was elevated with Ex(9-39) (P < 0.02). GLP-1 receptor antagonism impairs CRF with and without ET, attenuates the vascular adaptation to ET, and elevates cardiac mitochondrial respiration. These data suggest that GLP-1 is integral to the adaptive vascular response to ET.


Assuntos
Adaptação Fisiológica , Aorta/fisiologia , Aptidão Cardiorrespiratória , Artérias Carótidas/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Condicionamento Físico Animal , Animais , Aorta/metabolismo , Artérias Carótidas/metabolismo , Tolerância ao Exercício , Masculino , Mitocôndrias Cardíacas/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Wistar , Rigidez Vascular , Vasoconstrição , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA