Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 51(2): 712-739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018710

RESUMO

Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software.


Assuntos
Neoplasias da Mama , Mama , Humanos , Feminino , Mama/diagnóstico por imagem , Mamografia/métodos , Radiometria/métodos , Método de Monte Carlo , Neoplasias da Mama/diagnóstico por imagem
2.
J Appl Clin Med Phys ; 24(5): e13938, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995917

RESUMO

Reject rate analysis is considered an integral part of a diagnostic radiography quality control (QC) program. A rejected image is a patient radiograph that was not presented to a radiologist for diagnosis and that contributes unnecessary radiation dose to the patient. Reject rates that are either too high or too low may suggest systemic department shortcomings in QC mechanisms. Due to the lack of standardization, reject data often cannot be easily compared between radiography systems from different vendors. The purpose of this report is to provide guidance to help standardize data elements that are required for comprehensive reject analysis and to propose data reporting and workflows to enable an effective and comprehensive reject rate monitoring program. Essential data elements, a proposed schema for classifying reject reasons, and workflow implementation options are recommended in this task group report.


Assuntos
Radiografia , Humanos , Controle de Qualidade , Padrões de Referência
3.
Med Phys ; 45(11): e1146-e1160, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30255505

RESUMO

Beginning with the advent of digital radiography systems in 1981, manufacturers of these systems provided indicators of detector exposure. These indicators were manufacturer-specific, and users in facilities with equipment from multiple manufacturers found it a challenge to monitor and manage variations in indicated exposure in routine clinical use. In 2008, a common definition of exposure index (EI) was realized in International Electrotechnical Commission (IEC) International Standard 62494-1 Ed. 1, which also introduced and defined the deviation index (DI), a number quantifying the difference between the detector EI for a given radiograph and the target exposure index (EIT ). An exposure index that differed by a constant from that established by the IEC and the concept of the deviation index also appear in American Association of Physicists in Medicine (AAPM) Report No. 116 published in 2009. The AAPM Report No. 116 went beyond the IEC standard in supplying a table (Table II in the report of TG-116) titled "Exposure Indicator DI Control Limits for Clinical Images," which listed suggested DI ranges and actions to be considered for each range. As the IEC EI was implemented and clinical DI data were gathered, concerns were voiced that the DI control limits published in the report of TG-116 were too strict and did not accurately reflect clinical practice. The charge of task group 232 (TG-232) and the objective of this final report was to investigate the current state of the practice for CR/DR Exposure and Deviation Indices based on AAPM TG 116 and IEC-62494, for the purpose of establishing achievable goals (reference levels) and action levels in digital radiography. Data corresponding to EI and DI were collected from a range of practice settings for a number of body parts and views (adults and pediatric radiographs) and analyzed in aggregate and separately. A subset of radiographs was also evaluated by radiologists based on criteria adapted from the European Guidelines on Quality Criteria for Diagnostic Radiographic Images from the European Commission. Analysis revealed that typical DI distribution was characterized by a standard deviation (SD) of 1.3-3.6 with mean DI values substantially different from 0.0, and less than 50% of DI values fell within the significant action limits proposed by AAPM TG-116 (-1.0 ≤ DI ≤ 1.0). Recommendations stemming from this analysis include targeting a mean DI value of 0.0 and action limits at ±1 and ±2 SD of the DI based on actual DI data of an individual site. EIT values, DI values, and associated action limits should be reviewed on an ongoing basis and optimization of DI values should be a process of continuous quality improvement with a goal of reducing practice variation.


Assuntos
Exposição à Radiação/análise , Intensificação de Imagem Radiográfica/instrumentação , Sociedades Científicas , Intensificação de Imagem Radiográfica/normas , Padrões de Referência
4.
J Am Coll Radiol ; 12(7): 703-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26003589

RESUMO

PURPOSE: The authors report the implementation and outcomes of a CT radiation dose optimization and tracking program at a large quaternary-care health care system. METHODS: A committee reviewed, optimized, and released standardized imaging protocols for the most common CT examinations across the health system. Volume CT dose index and dose-length product (DLP) diagnostic reference levels (DRLs) were established, with the goal of decreasing the percentage of outliers (CT scans with DLPs greater than the established DRLs) to <5% of tracked CT examinations. Baseline radiation dose data were manually extracted for 5% of total examinations. A semiautomated process to analyze all DLP data was then implemented to monitor outliers. RESULTS: The baseline percentage of outliers was slightly higher than 10% for pediatric scans but nearly 26.5% for adult scans. Over the first year, after standardized protocols were distributed, the percentage of outliers decreased for pediatric brain (from 22% to 6%), adult brain (from 23% to 3%), and adult chest (from 22% to 11%) examinations. Over the next 2 years, after the dose-tracking program was implemented, the percentage of outliers decreased for adult (brain, from 3% to 1%; chest, from 11% to 1%; abdomen, from 24% to 1%) and pediatric (brain, from 6% to 2%; chest, from 11% to 0%; abdomen, from 7% to 1%) examinations. CONCLUSIONS: The reported CT protocol optimization and dose-tracking program enabled a sustainable reduction in the proportion of CT examinations being performed above established DRLs from as high as 26% to <1% over a period of 2 years.


Assuntos
Doses de Radiação , Monitoramento de Radiação/normas , Tomografia Computadorizada por Raios X/normas , Humanos , Ohio , Valores de Referência
5.
AJR Am J Roentgenol ; 196(2): W144-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21257855

RESUMO

OBJECTIVE: The purpose of this article is to determine whether the average of N CT images acquired at a particular dose (D) has image noise equivalent to that of a single image acquired at a dose of N × D. MATERIALS AND METHODS: An electron density phantom, an image quality phantom, and an adult anthropomorphic phantom were scanned multiple times on a 16-MDCT scanner at five effective tube current-rotation time product (mAs) settings (130 kVp; 12, 24, 48, 72, and 144 mAs). Lower-mAs images were averaged to simulate higher-mAs images. Differences in CT number and image noise between simulated and acquired images were quantified using the electron density phantom. Image quality phantom images were scored by three physicists to investigate differences in low- and high-contrast resolution. A forced-choice observer study was performed with three radiologists using anthropomorphic phantom images to evaluate differences in overall image quality. RESULTS: The CT number was, on average, reproduced to within 1 HU, and image noise was reproduced to within 4%, which is below the threshold for visibly perceptible differences in noise. Low- and high-contrast resolution were not degraded, and simulated images were visually indistinguishable from acquired images. CONCLUSION: For the dose range studied, it was concluded that the image quality of a CT image produced by averaging multiple low-mAs CT images is identical to that of a high-mAs image acquired at equivalent effective dose, when all other acquisition and reconstruction parameters are held constant. Prospective CT dose-reduction studies may be feasible by acquiring multiple low-dose scans instead of a single high-dose scan. Simulated high-dose images could be interpreted clinically, whereas lower-dose images would be available for an observer study.


Assuntos
Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Humanos , Modelos Lineares , Imagens de Fantasmas , Distribuição de Poisson , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA