Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Cancer Ther ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507737

RESUMO

Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

2.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37461469

RESUMO

Purpose: Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design: We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results: We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion: This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

3.
J Infect Dis ; 229(2): 558-566, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37889572

RESUMO

Congenital toxoplasmosis in humans and in other mammalian species, such as small ruminants, is a well-known cause of abortion and fetal malformations. The calcium-dependent protein kinase 1 (CDPK1) inhibitor BKI-1748 has shown a promising safety profile for its use in humans and a good efficacy against Toxoplasma gondii infection in vitro and in mouse models. Ten doses of BKI-1748 given every other day orally in sheep at 15 mg/kg did not show systemic or pregnancy-related toxicity. In sheep experimentally infected at 90 days of pregnancy with 1000 TgShSp1 oocysts, the BKI-1748 treatment administered from 48 hours after infection led to complete protection against abortion and congenital infection. In addition, compared to infected/untreated sheep, treated sheep showed a drastically lower rectal temperature increase and none showed IgG seroconversion throughout the study. In conclusion, BKI-1748 treatment in pregnant sheep starting at 48 hours after infection was fully effective against congenital toxoplasmosis.


Assuntos
Aborto Espontâneo , Doenças Transmissíveis , Toxoplasma , Toxoplasmose Congênita , Toxoplasmose , Gravidez , Humanos , Feminino , Camundongos , Ovinos , Animais , Toxoplasmose Congênita/tratamento farmacológico , Toxoplasmose Congênita/prevenção & controle , Mamíferos
4.
ACS Infect Dis ; 9(10): 1821-1833, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37722671

RESUMO

Each year, approximately 50,000 children under 5 die as a result of diarrhea caused by Cryptosporidium parvum, a protozoan parasite. There are currently no effective drugs or vaccines available to cure or prevent Cryptosporidium infection, and there are limited tools for identifying and validating targets for drug or vaccine development. We previously reported a high throughput screening (HTS) of a large compound library against Plasmodium N-myristoyltransferase (NMT), a validated drug target in multiple protozoan parasite species. To identify molecules that could be effective against Cryptosporidium, we counter-screened hits from the Plasmodium NMT HTS against Cryptosporidium NMT. We identified two potential hit compounds and validated them against CpNMT to determine if NMT might be an attractive drug target also for Cryptosporidium. We tested the compounds against Cryptosporidium using both cell-based and NMT enzymatic assays. We then determined the crystal structure of CpNMT bound to Myristoyl-Coenzyme A (MyrCoA) and structures of ternary complexes with MyrCoA and the hit compounds to identify the ligand binding modes. The binding site architectures display different conformational states in the presence of the two inhibitors and provide a basis for rational design of selective inhibitors.


Assuntos
Criptosporidiose , Cryptosporidium , Plasmodium , Criança , Humanos , Criptosporidiose/tratamento farmacológico , Desenvolvimento de Medicamentos
5.
J Nat Prod ; 86(6): 1596-1605, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37276438

RESUMO

Xanthoquinodins make up a distinctive class of xanthone-anthraquinone heterodimers reported as secondary metabolites from several fungal species. Through a collaborative multi-institutional screening program, a fungal extract prepared from a Trichocladium sp. was identified that exhibited strong inhibitory effects against several human pathogens (Mycoplasma genitalium, Plasmodium falciparum, Cryptosporidium parvum, and Trichomonas vaginalis). This report focuses on one of the unique samples that exhibited a desirable combination of biological effects: namely, it inhibited all four test pathogens and demonstrated low levels of toxicity toward HepG2 (human liver) cells. Fractionation and purification of the bioactive components and their congeners led to the identification of six new compounds [xanthoquinodins NPDG A1-A5 (1-5) and B1 (6)] as well as several previously reported natural products (7-14). The chemical structures of 1-14 were determined based on interpretation of their 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) data. Biological testing of the purified metabolites revealed that they possessed widely varying levels of inhibitory activity against a panel of human pathogens. Xanthoquinodins A1 (7) and A2 (8) exhibited the most promising broad-spectrum inhibitory effects against M. genitalium (EC50 values: 0.13 and 0.12 µM, respectively), C. parvum (EC50 values: 5.2 and 3.5 µM, respectively), T. vaginalis (EC50 values: 3.9 and 6.8 µM, respectively), and P. falciparum (EC50 values: 0.29 and 0.50 µM, respectively) with no cytotoxicity detected at the highest concentration tested (HepG2 EC50 > 25 µM).


Assuntos
Anti-Infecciosos , Criptosporidiose , Cryptosporidium , Fungos Mitospóricos , Humanos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Estrutura Molecular
6.
ACS Chem Biol ; 18(6): 1378-1387, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37167414

RESUMO

Potent and selective small-molecule inhibitors are valuable tools to elucidate the functions of protein kinases within complex signaling networks. Incorporation of a photoswitchable moiety into the inhibitor scaffold offers the opportunity to steer inhibitor potency with temporal precision, while the challenge of selective inhibition can often be addressed by employing a chemical genetic approach, termed the analog-sensitive method. Here, we combine the perks of these two approaches and report photoswitchable azopyrazoles to target calcium-dependent protein kinase 1 (CDPK1) from Toxoplasma gondii, a kinase naturally susceptible to analog-sensitive kinase inhibitors due to its glycine gatekeeper residue. The most promising azopyrazoles display favorable photochemical properties, thermal stability, and a substantial difference in IC50 values between both photostationary states. Consequently, the CDPK1 kinase reaction can be controlled dynamically and reversibly by applying light of different wavelengths. Inhibition of CDPK1 by the azopyrazoles drastically relies on the nature of the gatekeeper residue as a successive increase in gatekeeper size causes a concurrent loss of inhibitory activity. Furthermore, two photoswitchable inhibitors exhibit activity against T. gondii and Cryptosporidium parvum infection in a cell culture model, making them a promising addition to the toolbox for dissecting the role of CDPK1 in the infectious cycle with high temporal control. Overall, this work merges the benefits of the analog-sensitive approach and photopharmacology without compromising inhibitory potency and thus holds great promise for application to other protein kinases in the future.


Assuntos
Criptosporidiose , Cryptosporidium , Toxoplasma , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Cryptosporidium/metabolismo , Fosforilação , Proteínas Quinases/metabolismo
7.
Microbiol Spectr ; 11(3): e0064723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039683

RESUMO

There is an unmet need for effective therapies for treating diseases associated with the intestinal parasite Giardia lamblia. In this study, a library of chemically validated purified natural products and fungal extracts was screened for chemical scaffolds that can inhibit the growth of G. lamblia. The phenotypic screen led to the identification of several previously unreported classes of natural product inhibitors that block the growth of G. lamblia. Hits from phenotypic screens of these naturally derived compounds are likely to possess a variety of mechanisms of action not associated with clinically used nitroimidazole and thiazolide compounds. They may therefore be effective against current drug-resistant parasite strains. IMPORTANCE There is a direct link between widespread prevalence of clinical giardiasis and poverty. This may be one of the reasons why giardiasis is a significant contributor to diarrheal morbidity, stunting, and death of children in resource-limited communities around the world. FDA-approved treatments for giardiasis include metronidazole, related nitroimidazole drugs, and albendazole. However, a substantial number of clinical infections are resistant to these treatments. The depth of the challenge is partly exacerbated by a lack of investment in the discovery and development of novel agents for treatment of giardiasis. Applicable interventions must include new drug development strategies that will result in the identification of effective therapeutics, particularly those that are inexpensive and can be quickly advanced to clinical uses, such as products from nature. This study identified novel chemical scaffolds from fungi that can form the basis of future medicinal chemistry optimization of novel antigiardial agents.


Assuntos
Antiprotozoários , Produtos Biológicos , Giardíase , Criança , Humanos , Giardíase/parasitologia , Antiprotozoários/farmacologia , Produtos Biológicos/farmacologia , Metronidazol/uso terapêutico , Fungos
8.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920244

RESUMO

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Assuntos
Antineoplásicos , Antiprotozoários , Criptosporidiose , Cryptosporidium parvum , Animais , Bovinos , Camundongos , Ratos , Criptosporidiose/tratamento farmacológico , Antiprotozoários/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Oocistos
9.
Antimicrob Agents Chemother ; 66(7): e0001722, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35703552

RESUMO

A phenotypic screen of the ReFRAME compound library was performed to identify cell-active inhibitors that could be developed as therapeutics for giardiasis. A primary screen against Giardia lamblia GS clone H7 identified 85 cell-active compounds at a hit rate of 0.72%. A cytotoxicity counterscreen against HEK293T cells was carried out to assess hit compound selectivity for further prioritization. Mavelertinib (PF-06747775), a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), was identified as a potential new therapeutic based on indication, activity, and availability after reconfirmation. Mavelertinib has in vitro efficacy against metronidazole-resistant 713-M3 strains. Other EGFR-TKIs screened in follow-up assays exhibited insignificant inhibition of G. lamblia at 5 µM, suggesting that the primary molecular target of mavelertinib may have a different mechanistic binding mode from human EGFR-tyrosine kinase. Mavelertinib, dosed as low as 5 mg/kg of body weight or as high as 50 mg/kg, was efficacious in the acute murine Giardia infection model. These results suggest that mavelertinib merits consideration for repurposing and advancement to giardiasis clinical trials while its analogues are further developed.


Assuntos
Giardia lamblia , Giardíase , Animais , Receptores ErbB , Giardíase/tratamento farmacológico , Células HEK293 , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
10.
Int J Parasitol Drugs Drug Resist ; 17: 176-185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655903

RESUMO

The Neospora caninum Calcium-dependent protein kinase 1 (NcCDPK1) inhibitor BKI-1294 had demonstrated excellent efficacy in a pregnant mouse model of neosporosis, and was also highly efficacious in a pregnant sheep model of toxoplasmosis. In this work, we present the efficacy of BKI-1294 treatment (dosed 5 times orally every 48 h) starting 48 h after intravenous infection of sheep with 105 Nc-Spain7 tachyzoites at mid-pregnancy. In the dams, BKI-1294 plasma concentrations were above the IC50 for N. caninum for 12-15 days. In treated sheep, when they were compared to untreated ones, we observed a minor increase in rectal temperature, higher IFNγ levels after blood stimulation in vitro, and a minor increase of IgG levels against N. caninum soluble antigens through day 28 post-infection. Additionally, the anti-NcSAG1 and anti-NcSAG4 IgGs were lower in treated dams on days 21 and 42 post-infection. However, BKI-1294 did not protect against abortion (87% foetal mortality in both infected groups, treated and untreated) and did not reduce transplacental transmission, parasite load or lesions in placentomes and foetal brain. The lack of foetal protection was likely caused by short systemic exposure in the dams and suboptimal foetal exposure to this parasitostatic drug, which was unable to reduce replication of the likely established N. caninum tachyzoites in the foetus at the moment of treatment. New BKIs with a very low plasma clearance and good ability to cross the blood-brain and placental barriers need to be developed.


Assuntos
Coccidiose , Neospora , Toxoplasmose , Animais , Coccidiose/tratamento farmacológico , Coccidiose/prevenção & controle , Coccidiose/veterinária , Feminino , Feto , Camundongos , Placenta , Gravidez , Ovinos
11.
Artigo em Inglês | MEDLINE | ID: mdl-34482255

RESUMO

The apicomplexan parasite Neospora caninum is an important causative agent of congenital neosporosis, resulting in abortion, birth of weak offspring and neuromuscular disorders in cattle, sheep, and many other species. Among several compound classes that are currently being developed, two have been reported to limit the effects of congenital neosporosis: (i) bumped kinase inhibitors (BKIs) target calcium dependent protein kinase 1 (CDPK1), an enzyme that is encoded by an apicoplast-derived gene and found only in apicomplexans and plants. CDPK1 is essential for host cell invasion and egress; (ii) endochin-like quinolones (ELQs) are inhibitors of the cytochrome bc1 complex of the mitochondrial electron transport chain and thus inhibit oxidative phosphorylation. We here report on the in vitro and in vivo activities of BKI-1748, and of ELQ-316 and its respective prodrugs ELQ-334 and ELQ-422, applied either as single-compounds or ELQ-BKI-combinations. In vitro, BKI-1748 and ELQ-316, as well as BKI-1748 and ELQ-334, acted synergistically, while this was not observed for the BKI-1748/ELQ-422 combination treatment. In a N. caninum-infected pregnant BALB/c mouse model, the synergistic effects observed in vitro were not entirely reproduced, but 100% postnatal survival and 100% inhibition of vertical transmission was noted in the group treated with the BKI-1748/ELQ-334 combination. In addition, the combined drug applications resulted in lower neonatal mortality compared to treatments with single drugs.


Assuntos
Coccidiose , Neospora , Parasitos , Quinolonas , Animais , Bovinos , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neospora/genética , Gravidez , Ovinos
12.
Artigo em Inglês | MEDLINE | ID: mdl-34030110

RESUMO

Bumped kinase inhibitors (BKIs) target the apicomplexan calcium-dependent protein kinase 1 (CDPK1). BKI-1748, a 5-aminopyrazole-4-carboxamide compound when added to fibroblast cells concomitantly to the time of infection, inhibited proliferation of apicomplexan parasites at EC50s of 165 nM (Neospora caninum) and 43 nM (Toxoplasma gondii). Immunofluorescence and electron microscopy showed that addition of 2.5 µM BKI-1748 to infected HFF monolayers transformed parasites into multinucleated schizont-like complexes (MNCs) containing newly formed zoites, which were unable to separate and form infective tachyzoites or undergo egress. In zebrafish (Danio rerio) embryo development assays, no embryonic impairment was detected within 96 h at BKI-1748 concentrations up to 10 µM. In pregnant mice, BKI-1748 applied at days 9-13 of pregnancy at a dose of 20 mg/kg/day was safe and no pregnancy interference was observed. The efficacy of BKI-1748 was assessed in standardized pregnant mouse models infected with N. caninum (NcSpain-7) tachyzoites or T. gondii (TgShSp1) oocysts. In both models, treatments resulted in increased pup survival and profound inhibition of vertical transmission. However, in dams and non-pregnant mice, BKI-1748 treatments resulted in significantly decreased cerebral parasite loads only in T. gondii infected mice. In the T. gondii-model, ocular infection was detected in 10 out of 12 adult mice of the control group, but only in 3 out of 12 mice in the BKI-1748-treated group. Thus, TgShSp1 oocyst infection is a suitable model to study both cerebral and ocular infection by T. gondii. BKI-1748 represents an interesting candidate for follow-up studies on neosporosis and toxoplasmosis in larger animal models.


Assuntos
Coccidiose , Neospora , Parasitos , Toxoplasma , Animais , Coccidiose/tratamento farmacológico , Feminino , Camundongos , Oocistos , Gravidez , Peixe-Zebra
13.
ACS Infect Dis ; 7(5): 1275-1282, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33740373

RESUMO

New drugs are critically needed to treat Cryptosporidium infections, particularly for malnourished children under 2 years old in the developing world and persons with immunodeficiencies. Bioactive compounds from the Tres-Cantos GSK library that have activity against other pathogens were screened for possible repurposing against Cryptosporidium parvum growth. Nineteen compounds grouped into nine structural clusters were identified using an iterative process to remove excessively toxic compounds and screen related compounds from the Tres-Cantos GSK library. Representatives of four different clusters were advanced to a mouse model of C. parvum infection, but only one compound, an imidazole-pyrimidine, led to significant clearance of infection. This imidazole-pyrimidine compound had a number of favorable safety and pharmacokinetic properties and was maximally active in the mouse model down to 30 mg/kg given daily. Though the mechanism of action against C. parvum was not definitively established, this imidazole-pyrimidine compound inhibits the known C. parvum drug target, calcium-dependent protein kinase 1, with a 50% inhibitory concentration of 2 nM. This compound, and related imidazole-pyrimidine molecules, should be further examined as potential leads for Cryptosporidium therapeutics.


Assuntos
Doenças Transmissíveis , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criptosporidiose/tratamento farmacológico , Reposicionamento de Medicamentos , Humanos , Lactente
14.
ACS Infect Dis ; 7(5): 1200-1207, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33565854

RESUMO

Bumped kinase inhibitors (BKIs) that target Cryptosporidium parvum calcium-dependent protein kinase 1 have been well established as potential drug candidates against cryptosporidiosis. Recently, BKI-1649, with a 7H-pyrrolo[2,3-d]pyrimidin-4-amine, or "pyrrolopyrimidine", central scaffold, has shown improved efficacy in mouse models of Cryptosporidium at substantially reduced doses compared to previously explored analogs of the pyrazolopyrimidine scaffold. Here, two pyrrolopyrimidines with varied substituent groups, BKI-1812 and BKI-1814, were explored in several in vitro and in vivo models and show improvements in potency over the previously utilized pyrazolopyrimidine bumped kinase inhibitors while maintaining equivalent results in other key properties, such as toxicity and efficacy, with their pyrazolopyrimidine isosteric counterparts.


Assuntos
Antiprotozoários , Criptosporidiose , Cryptosporidium , Animais , Criptosporidiose/tratamento farmacológico , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas , Pirróis
15.
Vet Parasitol ; 289: 109336, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33418437

RESUMO

This is a review of the development of bumped-kinase inhibitors (BKIs) for the therapy of One Health parasitic apicomplexan diseases. Many apicomplexan infections are shared between humans and livestock, such as cryptosporidiosis and toxoplasmosis, as well as livestock only diseases such as neosporosis. We have demonstrated proof-of-concept for BKI therapy in livestock models of cryptosporidiosis (newborn calves infected with Cryptosporidium parvum), toxoplasmosis (pregnant sheep infected with Toxoplasma gondii), and neosporosis (pregnant sheep infected with Neospora caninum). We discuss the potential uses of BKIs for the treatment of diseases caused by apicomplexan parasites in animals and humans, and the improvements that need to be made to further develop BKIs.


Assuntos
Antiparasitários/farmacologia , Criptosporidiose/tratamento farmacológico , Saúde Única , Piperidinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Animais , Apicomplexa , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-32861205

RESUMO

Bumped kinase inhibitors (BKIs) are a new class of antiprotozoal drugs that target calcium-dependent protein kinase 1 (CDPK1) in various apicomplexan parasites. A multiple dose regimen of BKI 1369 has been shown to be highly effective against Cystoisospora suis (syn. Isospora suis), the causative agent of neonatal porcine coccidiosis. However, multiple dosing may not be widely applicable in the field. The present study aimed to determine the efficacy of reduced treatment frequencies with BKI 1369 against porcine cystoisosporosis in vitro and in vivo. Pre-incubation of sporozoites with BKI 1369 completely failed to inhibit the infection in vitro unless treatment was prolonged post-infection. Notably, a single treatment of infected cell cultures 2 days post-infection (dpi) resulted in a significant reduction of merozoite replication. In an experimental infection model, treatment of suckling piglets experimentally infected with C. suis 2 and 4 dpi with 20 mg BKI 1369/kg body weight completely suppressed oocyst excretion. A single treatment on the day of infection or 2 dpi suppressed oocyst excretion in 50% and 82% of the piglets and reduced the quantitative excretion in those that shed oocysts by 95.2% and 98.4%, respectively. Moreover, a significant increase in body weight gain and reduced number of diarrhea days were observed in BKI 1369 treated piglets compared to the control piglets, irrespective of time points and frequencies of treatment. Given that reduced treatment frequencies with BKI 1369 are comparable in efficacy to repeated applications without any adverse effects, this could be considered as a practical therapeutic alternative against porcine cystoisosporosis.


Assuntos
Coccidiose , Piperidinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Sarcocystidae , Doenças dos Suínos , Animais , Coccidiose/veterinária , Suínos , Doenças dos Suínos/parasitologia
17.
Molecules ; 25(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560085

RESUMO

Transmission of human malaria parasites (Plasmodium spp.) by Anopheles mosquitoes is a continuous process that presents a formidable challenge for effective control of the disease. Infectious gametocytes continue to circulate in humans for up to four weeks after antimalarial drug treatment, permitting prolonged transmission to mosquitoes even after clinical cure. Almost all reported malaria cases are transmitted to humans by mosquitoes, and therefore decreasing the rate of Plasmodium transmission from humans to mosquitoes with novel transmission-blocking remedies would be an important complement to other interventions in reducing malaria incidence.


Assuntos
Anopheles/parasitologia , Antimaláricos/uso terapêutico , Malária , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão
18.
Int J Parasitol ; 50(5): 413-422, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32224121

RESUMO

Bumped Kinase Inhibitors, targeting Calcium-dependent Protein Kinase 1 in apicomplexan parasites with a glycine gatekeeper, are promising new therapeutics for apicomplexan diseases. Here we will review advances, as well as challenges and lessons learned regarding efficacy, safety, and pharmacology that have shaped our selection of pre-clinical candidates.


Assuntos
Apicomplexa/efeitos dos fármacos , Coccidiose/tratamento farmacológico , Inibidores de Proteínas Quinases , Animais , Apicomplexa/metabolismo , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/metabolismo , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Toxoplasma/efeitos dos fármacos , Toxoplasma/metabolismo , Toxoplasmose/tratamento farmacológico
19.
Sci Rep ; 10(1): 2683, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32042060

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Sci Rep ; 9(1): 13567, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537849

RESUMO

Shigella spp., the bacteria responsible for shigellosis, are one of the leading causes of diarrheal morbidity and mortality amongst children. There is a pressing need for the development of novel therapeutics, as resistance of Shigella to many currently used antibiotics is rapidly emerging. This paper describes the development of robust in vitro and in vivo tools to study antibiotic efficacy against Shigella flexneri. A novel bioluminescent S. flexneri strain (S. flexneri lux1) was generated, which can be used in a mammalian epithelial cell co-culture assay to evaluate antibiotic intracellular and extracellular efficacy. In addition, the S. flexneri lux1 strain was used with an intraperitoneal (IP) murine model of shigellosis to test the efficacy of ciprofloxacin and ampicillin. Both antibiotics significantly reduced the observed radiance from the gastrointestinal tissue of infected mice compared to vehicle control. Furthermore, plated gastrointestinal tissue homogenate confirmed antibiotic treatment significantly reduced the S. flexneri infection. However, in contrast to the results generated with tissue homogenate, the radiance data was not able to distinguish between the efficacy of ampicillin and ciprofloxacin. Compared to traditional methods, these models can be utilized for efficient screening of novel antibiotics aiding in the discovery of new treatments against shigellosis.


Assuntos
Antibacterianos/administração & dosagem , Disenteria Bacilar/tratamento farmacológico , Luciferases/metabolismo , Shigella flexneri/efeitos dos fármacos , Ampicilina/administração & dosagem , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Linhagem Celular , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacologia , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Injeções Intraperitoneais , Luciferases/genética , Substâncias Luminescentes/metabolismo , Medições Luminescentes , Camundongos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Plasmídeos/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA