Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae023, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38500700

RESUMO

Hydrogen may be the most important electron donor available in the subsurface. Here we analyse the diversity, abundance and expression of hydrogenases in 5 proteomes, 25 metagenomes, and 265 amplicon datasets of groundwaters with diverse geochemistry. A total of 1545 new [NiFe]-hydrogenase gene sequences were recovered, which considerably increased the number of sequences (1999) in a widely used database. [NiFe]-hydrogenases were highly abundant, as abundant as the DNA-directed RNA polymerase. The abundance of hydrogenase genes increased with depth from 0 to 129 m. Hydrogenases were present in 481 out of 1245 metagenome-assembled genomes. The relative abundance of microbes with hydrogenases accounted for ~50% of the entire community. Hydrogenases were actively expressed, making up as much as 5.9% of methanogen proteomes. Most of the newly discovered diversity of hydrogenases was in "Group 3b", which has been associated with sulfur metabolism. "Group 3d", facilitating the interconversion of electrons between hydrogen and NAD, was the most abundant and mainly observed in methanotrophs and chemoautotrophs. "Group 3a", associated with methanogenesis, was the most abundant in proteomes. Two newly discovered groups of [NiFe]-hydrogenases, observed in Methanobacteriaceae and Anaerolineaceae, further expanded diversity. Our results highlight the vast diversity, abundance and expression of hydrogenases in groundwaters, suggesting a high potential for hydrogen oxidation in subsurface habitats.

2.
Nat Commun ; 14(1): 3194, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311764

RESUMO

Around 50% of humankind relies on groundwater as a source of drinking water. Here we investigate the age, geochemistry, and microbiology of 138 groundwater samples from 95 monitoring wells (<250 m depth) located in 14 aquifers in Canada. The geochemistry and microbiology show consistent trends suggesting large-scale aerobic and anaerobic hydrogen, methane, nitrogen, and sulfur cycling carried out by diverse microbial communities. Older groundwaters, especially in aquifers with organic carbon-rich strata, contain on average more cells (up to 1.4 × 107 mL-1) than younger groundwaters, challenging current estimates of subsurface cell abundances. We observe substantial concentrations of dissolved oxygen (0.52 ± 0.12 mg L-1 [mean ± SE]; n = 57) in older groundwaters that seem to support aerobic metabolisms in subsurface ecosystems at an unprecedented scale. Metagenomics, oxygen isotope analyses and mixing models indicate that dark oxygen is produced in situ via microbial dismutation. We show that ancient groundwaters sustain productive communities and highlight an overlooked oxygen source in present and past subsurface ecosystems of Earth.


Assuntos
Água Subterrânea , Microbiota , Oxigênio , Isótopos de Oxigênio , Hidrogênio
3.
Environ Sci Technol ; 55(14): 9657-9671, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34251200

RESUMO

The potential contamination of shallow groundwater with inorganic constituents is a major environmental concern associated with shale gas extraction through hydraulic fracturing. However, the impact of shale gas development on groundwater quality is a highly controversial issue. The only way to reliably assess whether groundwater quality has been impacted by shale gas development is to collect pre-development baseline data against which subsequent changes in groundwater quality can be compared. The objective of this paper is to provide a conceptual and methodological framework for establishing a baseline of inorganic groundwater quality in shale gas areas, which is becoming standard practice as a prerequisite for evaluating shale gas development impacts on shallow aquifers. For this purpose, this paper first reviews the potential sources of inorganic contaminants in shallow groundwater from shale gas areas. Then, it reviews the previous baseline studies of groundwater geochemistry in shale gas areas, showing that a comprehensive baseline assessment includes documenting the natural sources of salinity, potential geogenic contamination, and potential anthropogenic influences from legacy contamination and surface land use activities that are not related to shale gas development. Based on this knowledge, best practices are identified in terms of baseline sampling, selection of inorganic baseline parameters, and definition of threshold levels.


Assuntos
Água Subterrânea , Fraturamento Hidráulico , Poluentes Químicos da Água , Monitoramento Ambiental , Gás Natural , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 53(21): 12914-12922, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31610659

RESUMO

Aqueous geochemistry datasets from regional groundwater monitoring programs can be a major asset for environmental baseline assessment (EBA) in regions with development of natural gases from unconventional hydrocarbon resources. However, they usually do not include crucial parameters for EBA in areas of shale gas development such as methane concentrations. A logistic regression (LR) model was developed to predict the probability of methane occurrence in aquifers in Alberta (Canada). The model was calibrated and tested using geochemistry data including methane concentrations from two groundwater monitoring programs. The LR model correctly predicts methane occurrence in 89.8% (n = 234 samples) and 88.1% (n = 532 samples) of groundwater samples from each monitoring program. Methane concentrations strongly depend on the occurrence of electron donors such as sulfate and to a lesser extent on well depth and the total dissolved solids of groundwater. The model was then applied to a province-wide public health groundwater monitoring program (n = 52,849 samples) providing aqueous geochemistry data but no methane concentrations. This approach allowed the prediction of methane occurrence in regions where no groundwater gas data are available, thereby increasing the resolution of EBA in areas of shale gas development by using basic hydrochemical parameters measured in high-density groundwater monitoring programs.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Alberta , Monitoramento Ambiental , Metano , Gás Natural , Campos de Petróleo e Gás
5.
J Contam Hydrol ; 226: 103525, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31445435

RESUMO

Due to increasing concerns over the potential impact of shale gas and coalbed methane (CBM) development on groundwater resources, it has become necessary to develop reliable tools to detect any potential pollution associated with hydrocarbon exploitation from unconventional reservoirs. One of the key concepts for such monitoring approaches is the establishment of a geochemical baseline of the considered groundwater systems. However, the detection of methane is not enough to assess potential impact from CBM and shale gas exploitation since methane in low concentrations has been found to be naturally ubiquitous in many groundwater systems. The objective of this study was to determine the methane sources, the extent of potential methane oxidation, and gas-water-rock-interactions in shallow aquifers by integrating chemical and isotopic monitoring data of dissolved gases and aqueous species into a geochemical PHREEQC model. Using data from a regional groundwater observation network in Alberta (Canada), the model was designed to describe the evolution of the concentrations of methane, sulfate and dissolved inorganic carbon (DIC) as well as their isotopic compositions (δ34SSO4, δ13CCH4 and δ13CDIC) in groundwater subjected to different scenarios of migration, oxidation and in situ generation of methane. Model results show that methane migration and subsequent methane oxidation in anaerobic environments can strongly affect its concentration and isotopic fingerprint and potentially compromise the accurate identification of the methane source. For example elevated δ13CCH4 values can be the result of oxidation of microbial methane and may be misinterpreted as methane of thermogenic origin. Hence, quantification of the extent of methane oxidation is essential for determining the origin of methane in groundwater. The application of this model to aquifers in Alberta shows that some cases of elevated δ13CCH4 values were due to methane oxidation resulting in pseudo-thermogenic isotopic fingerprints of methane. The model indicated no contamination of shallow aquifers by deep thermogenic methane from conventional and unconventional hydrocarbon reservoirs under baseline conditions. The developed geochemical and multi-isotopic model describing the sources and fate of methane in groundwater is a promising tool for groundwater assessment purposes in areas with shale gas and coalbed methane development.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Alberta , Monitoramento Ambiental , Hidrocarbonetos , Isótopos , Metano , Campos de Petróleo e Gás
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA