Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1240296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520830

RESUMO

Polysialic acid (polySia) is a carbohydrate polymer that modulates several cellular processes, such as migration, proliferation and differentiation processes. In the brain, its essential impact during postnatal development is well known. However, in most other polySia positive organs, only its localization has been described so far. For instance, in the murine epididymis, smooth muscle cells of the epididymal duct are polysialylated during the first 2 weeks of postnatal development. To understand the role of polySia during the development of the epididymis, the consequences of its loss were investigated in postnatal polySia knockout mice. As expected, no polysialylation was visible in the absence of the polysialyltransferases ST8SiaII and ST8SiaIV. Interestingly, cGMP-dependent protein kinase I (PGK1), which is essentially involved in smooth muscle cell relaxation, was not detectable in peritubular smooth muscle cells when tissue sections of polySia knockout mice were analyzed by immunohistochemistry. In contrast to this signaling molecule, the structural proteins smooth muscle actin (SMA) and calponin were expressed. As shown before, in the duct system of the testis, even the expression of these structural proteins was impaired due to the loss of polySia. We now found that the rete testis, connecting the duct system of the testis and epididymis, was extensively dilated. The obtained data suggest that less differentiated smooth muscle cells of the testis and epididymis result in disturbed contractility and thus, fluid transport within the duct system visible in the enlarged rete testis.

2.
Cells ; 10(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072405

RESUMO

In the testis, the germinal epithelium of seminiferous tubules is surrounded by contractile peritubular cells, which are involved in sperm transport. Interestingly, in postnatal testis, polysialic acid (polySia), which is also an essential player for the development of the brain, was observed around the tubules. Western blotting revealed a massive decrease of polySia from postnatal day 1 towards puberty, together with a fundamental reduction of the net-like intertubular polySia. Using polysialyltransferase knockout mice, we investigated the consequences of the loss of polySia in the postnatal testis. Compared to postnatal wild-type animals, polySia knockouts showed slightly reduced smooth muscle actin (SMA) immunostaining of peritubular smooth muscle cells (SMCs), while calponin, marking more differentiated SMCs, dramatically decreased. In contrast, testicular SMA and calponin immunostaining remained unchanged in vascular SMCs in all genotypes. In addition, the cGMP-dependent protein kinase PKG I, a key enzyme of SMC relaxation, was nearly undetectable in the peritubular SMCs. Cell proliferation in the peritubular layer increased significantly in the knockouts, as shown by proliferating cell nuclear anti (PCNA) staining. Taken together, in postnatal testis, the absence of polySia resulted in an impaired differentiation of peritubular, but not vascular, SMCs to a more synthetic phenotype. Thus, polySia might influence the maintenance of a differentiated phenotype of non-vascular SMCs.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Ácidos Siálicos/metabolismo , Testículo/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Masculino , Camundongos Knockout , Fenótipo , Túbulos Seminíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA