Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Kidney Int ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901605

RESUMO

Vascularization plays a critical role in organ maturation and cell-type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.

2.
STAR Protoc ; 5(3): 103049, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38900631

RESUMO

Simultaneous high-throughput ATAC and RNA expression with sequencing (SHARE-seq) profiles transcriptomics and chromatin accessibility in the same cells at high throughput. Here, we present a protocol for multimodal profiling of human kidneys with SHARE-seq. We describe steps for processing fixed nuclei for SHARE-seq split-pool barcoding and library preparation. We also detail how to determine the optimal working concentration of Tn5 transposase for transposition and tagmentation. This protocol allows researchers to generate large-scale single-cell multiomics data at low reagent cost. For complete details on the use and execution of this protocol, please refer to Li et al.1.

4.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38854144

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to end-stage kidney disease. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single nucleus multimodal atlas of an orthologous mouse PKD model at early, mid and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes. We catalogue differentially expressed genes and activated epigenetic regions in each cell type during PKD progression, characterizing cell-type-specific responses to Pkd1 deletion. We describe heterogeneous, atypical collecting duct cells as well as proximal tubular cells that constitute cyst epithelia in PKD. The transcriptional regulation of the cyst lining cell marker GPRC5A is conserved between mouse and human PKD cystic epithelia, suggesting shared gene regulatory pathways. Our single nucleus multiomic analysis of mouse PKD provides a foundation to understand the earliest changes molecular deregulation in a mouse model of PKD at a single-cell resolution.

5.
JCI Insight ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916959

RESUMO

Acute kidney injury strongly upregulates the transcription factor Foxm1 in proximal tubule in vivo and Foxm1 drives epithelial proliferation in vitro. Here we report that deletion of Foxm1 either with a nephron specific Cre driver or by inducible global deletion reduces proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI-to-CKD transition with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report extracellular signal-regulated kinase (ERK) mediates FOXM1 induction downstream of the epidermal growth factor receptor (EGFR) in primary proximal tubule cells. We defined FOXM1 genomic binding sites by Cleavage Under Targets & Release Using Nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned datasets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identify two cis regulatory elements that bind FOXM1 and regulate CCNF expression, demonstrate that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK-FOXM1-CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.

6.
Data Brief ; 54: 110431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708307

RESUMO

Cortex, medulla and papilla are three major human kidney anatomic structures and they harbour unique metabolic functions, but the underlying metabolomic profiles are largely unknown at spatial resolution. Here, we generated a spatially resolved metabolomics dataset on human kidney cortex, medulla and papilla tissues dissected from the same donor. Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry (MALDI-IMS) was used to detect metabolite species over mass-to-charge ratios of 50 -1500 for each section at a resolution of 10 × 10 µm2 pixel size. We present raw data matrix of each sample, feature annotations, raw AnnData merged from three samples and processed AnnData files after quality control, dimensional reduction and data integration, which contains a total of 170,459 spatially resolved metabolomes with 562 features detected. This dataset can be either visualized through an interactive browser or further analyzed to study metabolomic heterogeneity across regional human kidney anatomy.

9.
Cell Metab ; 36(5): 1105-1125.e10, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38513647

RESUMO

A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.


Assuntos
Epigenômica , Rim , Metabolômica , Transcriptoma , Humanos , Rim/metabolismo , Masculino , Perfilação da Expressão Gênica , Feminino
10.
JCI Insight ; 9(6)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516886

RESUMO

Kidney tubules use fatty acid oxidation (FAO) to support their high energetic requirements. Carnitine palmitoyltransferase 1A (CPT1A) is the rate-limiting enzyme for FAO, and it is necessary to transport long-chain fatty acids into mitochondria. To define the role of tubular CPT1A in aging and injury, we generated mice with tubule-specific deletion of Cpt1a (Cpt1aCKO mice), and the mice were either aged for 2 years or injured by aristolochic acid or unilateral ureteral obstruction. Surprisingly, Cpt1aCKO mice had no significant differences in kidney function or fibrosis compared with wild-type mice after aging or chronic injury. Primary tubule cells from aged Cpt1aCKO mice had a modest decrease in palmitate oxidation but retained the ability to metabolize long-chain fatty acids. Very-long-chain fatty acids, exclusively oxidized by peroxisomes, were reduced in kidneys lacking tubular CPT1A, consistent with increased peroxisomal activity. Single-nuclear RNA-Seq showed significantly increased expression of peroxisomal FAO enzymes in proximal tubules of mice lacking tubular CPT1A. These data suggest that peroxisomal FAO may compensate in the absence of CPT1A, and future genetic studies are needed to confirm the role of peroxisomal ß-oxidation when mitochondrial FAO is impaired.


Assuntos
Carnitina O-Palmitoiltransferase , Rim , Animais , Camundongos , Envelhecimento/genética , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Rim/metabolismo , Rim/patologia , Túbulos Renais/metabolismo
11.
Am J Physiol Renal Physiol ; 326(5): F827-F838, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482555

RESUMO

In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.


Assuntos
Injúria Renal Aguda , Apoptose , Células Epiteliais , Túbulos Renais Proximais , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Transdução de Sinais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular , Inflamação/metabolismo , Inflamação/patologia , Masculino
12.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328130

RESUMO

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition we generated a single nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting especially activation of proinflammatory pathways. We further generated single nucleus multiomic data from four human AKI samples including validation by genome-wide identification of NF-kB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubule cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.

13.
Nat Commun ; 15(1): 1396, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360882

RESUMO

Emerging spatially resolved transcriptomics technologies allow for the measurement of gene expression in situ at cellular resolution. We apply direct RNA hybridization-based in situ sequencing (dRNA HybISS, Cartana part of 10xGenomics) to compare male and female healthy mouse kidneys and the male kidney injury and repair timecourse. A pre-selected panel of 200 genes is used to identify cell state dynamics patterns during injury and repair. We develop a new computational pipeline, CellScopes, for the rapid analysis, multi-omic integration and visualization of spatially resolved transcriptomic datasets. The resulting dataset allows us to resolve 13 kidney cell types within distinct kidney niches, dynamic alterations in cell state over the course of injury and repair and cell-cell interactions between leukocytes and kidney parenchyma. At late timepoints after injury, C3+ leukocytes are enriched near pro-inflammatory, failed-repair proximal tubule cells. Integration of snRNA-seq dataset from the same injury and repair samples also allows us to impute the spatial localization of genes not directly measured by dRNA HybISS.


Assuntos
Rim , Transcriptoma , Camundongos , Animais , Masculino , Feminino , Rim/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , RNA/metabolismo , Túbulos Renais Proximais , Análise de Célula Única/métodos
14.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357930

RESUMO

Ten percent of the population worldwide suffers from chronic kidney disease (CKD), but the mechanisms driving CKD pathology are incompletely understood. While dysregulated lipid metabolism is one hallmark of CKD, the pathogenesis of cellular lipid accumulation remains unclear. In this issue of the JCI, Mukhi et al. Identify acyl-CoA synthetase short-chain family 2 (ACSS2) as a disease risk gene and demonstrate a role for ACSS2 in de novo lipogenesis (DNL). Notably, genetic or pharmacological inhibition of DNL protected against kidney disease progression in mice. These findings warrant evaluation of DNL inhibition with respect to efficacy and safety in people with CKD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Lipogênese/fisiologia , Insuficiência Renal Crônica/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
15.
Nat Commun ; 15(1): 1291, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347009

RESUMO

Renal proximal tubule epithelial cells have considerable intrinsic repair capacity following injury. However, a fraction of injured proximal tubule cells fails to undergo normal repair and assumes a proinflammatory and profibrotic phenotype that may promote fibrosis and chronic kidney disease. The healthy to failed repair change is marked by cell state-specific transcriptomic and epigenomic changes. Single nucleus joint RNA- and ATAC-seq sequencing offers an opportunity to study the gene regulatory networks underpinning these changes in order to identify key regulatory drivers. We develop a regularized regression approach to construct genome-wide parametric gene regulatory networks using multiomic datasets. We generate a single nucleus multiomic dataset from seven adult human kidney samples and apply our method to study drivers of a failed injury response associated with kidney disease. We demonstrate that our approach is a highly effective tool for predicting key cis- and trans-regulatory elements underpinning the healthy to failed repair transition and use it to identify NFAT5 as a driver of the maladaptive proximal tubule state.


Assuntos
Multiômica , Insuficiência Renal Crônica , Adulto , Humanos , Rim , Túbulos Renais Proximais , Células Epiteliais
16.
Kidney Int ; 105(1): 25-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182297

RESUMO

The 3-dimensional nature of chromatin architecture plays crucial roles in regulating gene expression in development, homeostasis, and disease. Until recently, however, comprehensive chromatin profiling in human kidneys has been lacking. In this issue, Eun and Kim et al. employed a multimodal approach by integrating a single-nucleus assay for transposase-accessible chromatin sequencing, chromatin immunoprecipitation sequencing, and Hi-C (a method to comprehensively detect chromatin interactions) to investigate how the epigenetic landscape is altered in diabetic kidney disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Cromatina/genética , Nefropatias Diabéticas/genética , Rim , Bioensaio , Epigenômica
17.
Genome Biol ; 25(1): 36, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287344

RESUMO

BACKGROUND: Mosaic loss of Y chromosome (LOY) is the most common chromosomal alteration in aging men. Here, we use single-cell RNA and ATAC sequencing to show that LOY is present in the kidney and increases with age and chronic kidney disease. RESULTS: The likelihood of a cell having LOY varies depending on its location in the nephron. Cortical epithelial cell types have a greater proportion of LOY than medullary or glomerular cell types, which may reflect their proliferative history. Proximal tubule cells are the most abundant cell type in the cortex and are susceptible to hypoxic injury. A subset of these cells acquires a pro-inflammatory transcription and chromatin accessibility profile associated with expression of HAVCR1, VCAM1, and PROM1. These injured epithelial cells have the greatest proportion of LOY and their presence predicts future kidney function decline. Moreover, proximal tubule cells with LOY are more likely to harbor additional large chromosomal gains and express pro-survival pathways. Spatial transcriptomics localizes injured proximal tubule cells to a pro-fibrotic microenvironment where they adopt a secretory phenotype and likely communicate with infiltrating immune cells. CONCLUSIONS: We hypothesize that LOY is an indicator of increased DNA damage and potential marker of cellular senescence that can be applied to single-cell datasets in other tissues.


Assuntos
Cromossomos Humanos Y , Insuficiência Renal Crônica , Humanos , Masculino , Mosaicismo , Envelhecimento/genética , Fenótipo , Insuficiência Renal Crônica/genética
18.
Transplantation ; 108(2): 421-429, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37638864

RESUMO

BACKGROUND: Rejection requires cell-cell contact involving immune cells. Inferring the transcriptional programs of cell-cell interactions from single-cell RNA-sequencing (scRNA-seq) data is challenging as spatial information is lost. METHODS: We combined a CD45 pos enrichment strategy with Cellular Indexing of Transcriptomes and Epitopes by sequencing based quantification of leukocyte surface proteins to analyze cell-cell interactions in 11 human kidney transplant biopsies encompassing a spectrum of rejection diagnoses. scRNA-seq was performed using the 10X Genomics platform. We applied the sequencing physically interacting cells computational method to deconvolute the transcriptional profiles of heterotypic physically interacting cells. RESULTS: The 11 human allograft biopsies generated 31 203 high-quality single-cell libraries. Clustering was further refined by combining Cellular Indexing of Transcriptomes and Epitopes by sequencing data from 6 different leukocyte-specific surface proteins. Three of 6 doublet clusters were identified as physically interacting cell complexes; macrophages or dendritic cells bound to B cells or plasma cells; natural killer (NK) or T cells bound to macrophages or dendritic cells and NK or T cells bound to endothelial cells. Myeloid-lymphocyte physically interacting cell complexes expressed activated and proinflammatory genes. Lymphocytes physically interacting with endothelial cells were enriched for NK and CD4 T cells. NK cell-endothelial cell contact caused increased expression of endothelial proinflammatory genes CXCL9 and CXCL10 and NK cell proinflammatory genes CCL3 , CCL4 , and GNLY . CONCLUSIONS: The transcriptional profiles of physically interacting cells from human kidney transplant biopsies can be inferred from scRNA-seq data using the sequencing physically interacting cells method. This approach complements previous methods that estimate cell-cell physical contact from scRNA-seq data.


Assuntos
Células Endoteliais , Rejeição de Enxerto , Humanos , Rim/patologia , Transcriptoma , Aloenxertos , Proteínas de Membrana/genética , Epitopos , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA