Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Angew Chem Int Ed Engl ; 63(10): e202317571, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38230818

RESUMO

Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1 m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1 m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.

3.
Nat Chem ; 16(1): 98-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884666

RESUMO

Exciplex-forming systems that display thermally activated delayed fluorescence are widely used for fabricating organic light-emitting diodes. However, their further development can be hindered through a lack of structural and thermodynamic characterization. Here we report the generation of inclusion complexes between a cage-like, macrocyclic, electron-accepting host (A) and various N-methyl-indolocarbazole-based electron-donating guests (D), which exhibit exciplex-like thermally activated delayed fluorescence via a through-space electron-transfer process. The D/A cocrystals are fully resolved by X-ray analyses, and UV-visible titration data show their formation to be an endothermic and entropy-driven process. Moreover, their emission can be fine-tuned through the molecular orbitals of the donor. Organic light-emitting diodes were fabricated using one of the D/A systems, and the maximum external quantum efficiency measured was 15.2%. An external quantum efficiency of 10.3% was maintained under a luminance of 1,000 cd m-2. The results show the potential of adopting inclusion complexation to better understand the relationships between the structure, formation thermodynamics and properties of exciplexes.

4.
Angew Chem Int Ed Engl ; 62(40): e202309831, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37594921

RESUMO

Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double-anchored AC-3 and AC-5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC-5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.

5.
J Am Chem Soc ; 144(32): 14897-14906, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35924834

RESUMO

Two-dimensional (2D) Dion-Jacobson (DJ) perovskite solar cells (PSCs), despite their advantage in versatility of n-layer variation, are subject to poor photovoltaic efficiency, particularly in the fill factor (FF), compared to their three-dimensional counterparts. To enhance the performance of DJ PSCs, the process of growing crystals and hence the corresponding morphology of DJ perovskites are of prime importance. Herein, we report the fast nonisothermal (NIT) crystallization protocol that is previously unrecognized for 2D perovskites to significantly improve the morphology, orientation, and charge transport of the DJ perovskite films. Comprehensive mechanistic studies reveal that the NIT effect leads to the secondary crystallization stage, forming network-like channels that play a vital role in the FF's leap-forward improvement and hence the DJ PSC's performance. As a whole, the NIT crystallized PSCs demonstrate a high power conversion efficiency and an FF of up to 19.87 and 86.16%, respectively. This research thus provides new perspectives to achieve highly efficient DJ PSCs.


Assuntos
Compostos de Cálcio , Óxidos , Cristalização , Titânio
6.
JACS Au ; 2(5): 1189-1199, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647592

RESUMO

Inverted perovskite solar cells (PSCs) have attracted intense attention because of their insignificant hysteresis and low-temperature fabrication process. However, the efficiencies of inverted PSCs are still inferior to those of commercialized silicon solar cells. Also, the poor stability of PSCs is one of the major impedances to commercialization. Herein, we rationally designed and synthesized a new series of electron donor (R,R-diphenylamino) and acceptor (pyridimium-(CH2) n -sulfonates) zwitterions as a boundary modulator and systematically investigated their associated interface properties. Comprehensive physical and optoelectronic studies verify that these zwitterions provide a four-in-one functionality: balancing charge carrier transport, suppressing less-coordinated Pb2+ defects, enhancing moisture resistance, and reducing ion migration. Although each functionality may have been reported by specific passivating molecules, a strategy that simultaneously regulates the charge-transfer balance and three other functionalities has not yet been developed. The results are to make an omnidirectional improvement of PSCs. Among all zwitterions, 4-(4-(4-(di-(4-methoxylphenyl)amino)phenyl)propane-1-ium-1-yl)butane-1-sulfonate (OMeZC3) optimizes the balance hole/electron mobility ratio of perovskite to 0.91, and the corresponding PSCs demonstrate a high power conversion efficiency (PCE) of up to 23.15% free from hysteresis, standing out as one of the champion PSCs with an inverted structure. Importantly, the OMeZC3-modified PSC exhibits excellent long-term stability, maintaining almost its initial PCE after being stored at 80% relative humidity for 35 days.

7.
ACS Appl Mater Interfaces ; 13(7): 8595-8605, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33586960

RESUMO

Efficient control of the perovskite crystallization and passivation of the defects at the surface and grain boundaries of perovskite films have turned into the most important strategies to restrain charge recombination toward high-performance and long-term stability of perovskite solar cells (PSCs). In this paper, we employed a small amount of natural vitamin B (carnitine) with dual functional groups in the MAPbI3 precursor solution to simultaneously passivate the positive- and negative-charged ionic defects, which would be beneficial for charge transport in the PSCs. In addition, such methodology can efficiently ameliorate crystallinity with texture, better film morphology, high surface coverage, and longer charge carrier lifetime, as well as induce preferable energy level alignment. Benefiting from these advantages, the power conversion efficiency of PSCs significantly increases from 16.43 to 20.12% along with not only a higher open-circuit voltage of 1.12 V but also an outstanding fill factor of 82.78%.

8.
ACS Appl Mater Interfaces ; 11(49): 45991-45998, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702893

RESUMO

A series of tailor-made highly efficient and near-infrared (NIR) porphyrin-based acceptors is designed and synthesized for fullerene-free bulk-heterojunction (BHJ) organic solar cells. Constructing BHJ active layers using a PTB7-Th donor and porphyrin acceptors (P-x), which have complementary absorption, accomplishes panchromatic photon-to-current conversion from 300 to 950 nm. Our study shows that side chains of the porphyrin acceptors fairly influence the molecular ordering and nanomorphology of the BHJ active layers. Significantly, the porphyrin acceptor with four dodecoxyl side chains (P-2) achieves an open-circuit voltage (VOC) of 0.80 V, short-circuit current density (JSC) of 13.94 mA cm-2, fill factor of 64.8%, and overall power conversion efficiency of 7.23%. This great performance is attributable to the ascendant light-harvesting capability in the visible and near-infrared region, a high-lying LUMO energy level, a relatively high and more balanced carrier mobilities, and more ordered face-on molecular packing, which is beneficial for obtaining high VOC and JSC.

9.
PLoS One ; 12(8): e0181789, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763461

RESUMO

The analysis of the backscattered statistics using the Nakagami parameter is an emerging ultrasound technique for assessing hepatic steatosis and fibrosis. Previous studies indicated that the echo amplitude distribution of a normal liver follows the Rayleigh distribution (the Nakagami parameter m is close to 1). However, using different frequencies may change the backscattered statistics of normal livers. This study explored the frequency dependence of the backscattered statistics in human livers and then discussed the sources of ultrasound scattering in the liver. A total of 30 healthy participants were enrolled to undergo a standard care ultrasound examination on the liver, which is a natural model containing diffuse and coherent scatterers. The liver of each volunteer was scanned from the right intercostal view to obtain image raw data at different central frequencies ranging from 2 to 3.5 MHz. Phantoms with diffuse scatterers only were also made to perform ultrasound scanning using the same protocol for comparisons with clinical data. The Nakagami parameter-frequency correlation was evaluated using Pearson correlation analysis. The median and interquartile range of the Nakagami parameter obtained from livers was 1.00 (0.98-1.05) for 2 MHz, 0.93 (0.89-0.98) for 2.3 MHz, 0.87 (0.84-0.92) for 2.5 MHz, 0.82 (0.77-0.88) for 3.3 MHz, and 0.81 (0.76-0.88) for 3.5 MHz. The Nakagami parameter decreased with the increasing central frequency (r = -0.67, p < 0.0001). However, the effect of ultrasound frequency on the statistical distribution of the backscattered envelopes was not found in the phantom results (r = -0.147, p = 0.0727). The current results demonstrated that the backscattered statistics of normal livers is frequency-dependent. Moreover, the coherent scatterers may be the primary factor to dominate the frequency dependence of the backscattered statistics in a liver.


Assuntos
Fígado/diagnóstico por imagem , Fígado/patologia , Neoplasias/diagnóstico por imagem , Ultrassonografia , Acústica , Adulto , Feminino , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Masculino , Oncologia/normas , Imagens de Fantasmas , Espalhamento de Radiação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA