Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Environ Sci Technol ; 58(12): 5524-5533, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466636

RESUMO

The high environmental concentrations, persistence, and toxicity of synthetic musk compounds (SMCs) necessitate a better grasp of their fate in wastewater treatment plants (WWTPs). To investigate the importance of WWTPs as pathways of SMCs to the environment, air and wastewater samples were collected at four WWTPs in Ontario, Canada. Polycyclic musks (PCMs) were present at higher concentrations than nitro musks (NMs) and macrocyclic musks (MCMs). Three PCMs [galaxolide (HHCB), tonalide (AHTN), and iso-E super (OTNE)] were the most abundant compounds (0.30-680 ng/m3 in air, 0.40-15 µg/L in influent, and 0.007-6.0 µg/L in effluent). Analyses of multiyear data suggest that risk management measures put in place have been effective in reducing the release of many SMCs into the environment. The highest removal efficiency, up to almost 100% of some SMCs, was observed for the plant with the longest solid retention time. A fugacity-based model was established to simulate the transport and fate of SMCs in the WWTP, and good agreement was obtained between the measured and modeled values. These findings indicate that the levels of certain SMCs discharged into the atmospheric and aquatic environments were substantial, potentially resulting in exposure to both humans and wildlife.


Assuntos
Ácidos Graxos Monoinsaturados , Poluentes Químicos da Água , Purificação da Água , Humanos , Poluentes Químicos da Água/análise , Águas Residuárias , Ontário , Benzopiranos/análise
2.
Sci Adv ; 9(41): eadi8082, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824609

RESUMO

Halomethoxybenzenes are pervasive in the atmosphere at concentration levels that exceed, often by an order of magnitude, those of the persistent organic pollutants with which they share the attributes of persistence and potential for long-range transport, bioaccumulation, and toxic effects. Long ignored by environmental chemists because of their predominantly natural origin-namely, synthesis by terrestrial wood-rotting fungi, marine algae, and invertebrates-knowledge of their environmental pathways remains limited. Through measuring the spatial and seasonal variability of four halomethoxybenzenes in air and precipitation and performing complementary environmental fate simulations, we present evidence that these compounds undergo continental-scale transport in the atmosphere, which they enter largely by evaporation from water. This also applies to halomethoxybenzenes originating in terrestrial environments, such as drosophilin A methyl ether, which reach aquatic environments with runoff, possibly in the form of their phenolic precursors. Our findings contribute substantially to the comprehension of sources and fate of halomethoxybenzenes, illuminating their widespread atmospheric dispersal.


Assuntos
Atmosfera , Invertebrados , Animais , Monitoramento Ambiental
3.
Environ Sci Technol ; 57(38): 14396-14406, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695984

RESUMO

Since the phase-out of polybrominated diphenyl ethers (PBDEs), large amounts of alternative halogenated flame retardants (AHFRs) have been introduced to the market. Due to their persistence and toxicity, halogenated flame retardants (HFRs) have become a concern for the ecosystem and human health. However, there remains limited assessment of the atmospheric loadings, sources, and environmental fate of HFRs in Lake Ontario, which receives urban-related inputs and cumulative chemical inputs from the upstream Great Lakes from Canada and the United States. We combined long-term measurements with a modified multimedia model based on site-specific environmental parameters from Lake Ontario to understand the trends and fate of HFRs. All HFRs were detected in the air, precipitation, lake trout, and herring gull egg samples throughout the sampling periods. General decreasing trends were found for PBDEs, while the temporal trends for AHFRs were not clear. Physical-chemical properties and emissions significantly influence the levels, profiles, and trends. Using the probabilistic modeling, HFR concentrations in lake water and sediment were predicted to be close to the measurement, suggesting a good performance for the modified model. The loadings from tributaries and wastewater effluent were the primary input pathways. Transformations in the water and sedimentation were estimated to be the dominant output pathway for the three HFRs.


Assuntos
Retardadores de Chama , Humanos , Ontário , Ecossistema , Éteres Difenil Halogenados , Lagos , Água
4.
Environ Sci Technol ; 57(25): 9224-9233, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294067

RESUMO

The use of passive air samplers (PAS) for semi-volatile organic compounds (SVOCs) continues to expand. To advance quantitative understanding of uptake kinetics, we calibrated the XAD-PAS, using a styrene-divinylbenzene sorbent, through a year-long side-by-side deployment with an active sampler. Twelve XAD-PASs, deployed in June 2020, were retrieved at 4-week intervals, while gas phase SVOCs were quantified in 48 consecutive week-long active samples taken from June 2020 to May 2021. Consistent with XAD's high uptake capacity, even relatively volatile SVOCs, such as hexachlorobutadiene, displayed linear uptake throughout the entire deployment. Sampling rates (SRs) range between 0.1 and 0.6 m3 day-1 for 26 SVOCs, including brominated flame retardants, organophosphate esters, and halogenated methoxylated benzenes. SRs are compared with experimental SRs reported previously. The ability of the existing mechanistic uptake model PAS-SIM to reproduce the observed uptake and SRs was evaluated. Agreement between simulated and measured uptake curves was reasonable but varied with compound volatility and the assumed stagnant air layer boundary thickness. Even though PAS-SIM succeeds in predicting the SR range for the studied SVOCs, it fails to capture the volatility dependence of the SR by underestimating the length of the linear uptake period and by failing to consider the kinetics of sorption.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Calibragem , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Cinética
5.
Environ Sci Ecotechnol ; 14: 100229, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36531934

RESUMO

The historical annual loading to, removal from, and cumulative burden in the Arctic Ocean for ß-hexachlorocyclohexane (ß-HCH), an isomer comprising 5-12% of technical HCH, is investigated using a mass balance box model from 1945 to 2020. Over the 76 years, loading occurred predominantly through ocean currents and river inflow (83%) and only a small portion via atmospheric transport (16%). ß-HCH started to accumulate in the Arctic Ocean in the late 1940s, reached a peak of 810 t in 1986, and decreased to 87 t in 2020, when its concentrations in the Arctic water and air were ∼30 ng m-3 and ∼0.02 pg m-3, respectively. Even though ß-HCH and α-HCH (60-70% of technical HCH) are both the isomers of HCHs with almost identical temporal and spatial emission patterns, these two chemicals have shown different major pathways entering the Arctic. Different from α-HCH with the long-range atmospheric transport (LRAT) as its major transport pathway, ß-HCH reached the Arctic mainly through long-range oceanic transport (LROT). The much higher tendency of ß-HCH to partition into the water, mainly due to its much lower Henry's Law Constant than α-HCH, produced an exceptionally strong pathway divergence with ß-HCH favoring slow transport in water and α-HCH favoring rapid transport in air. The concentration and burden of ß-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.

6.
Sci Total Environ ; 863: 160852, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36526181

RESUMO

As a class of plasticizers widely used in consumer products, some phthalate esters (PAEs) have been restricted due to their adverse health effects and ubiquitous presence, leading to the introduction of alternative non-phthalates plasticizers (NPPs) to the market. However, few studies focus on the influence of environmental parameters on the presence of these plasticizers and the potential human health risks for people living in poorly ventilated indoor spaces in cold regions. We investigated the trends of PAEs and NPPs in air in a typical indoor residence in northern China for over one year. The air concentrations of PAEs were significantly higher than those of NPPs (p < 0.05), indicating that PAEs are still the dominant plasticizers currently being used in the studied residence. PAEs showed seasonal fluctuation patterns of the highest levels found in summer and autumn. The temperature and relative humidity dependence for most PAEs and NPPs decreased with decreasing vapor pressure. Concentrations of the high molecular weight NPPs and PAEs positively correlated with total suspended particles (TSP). It is worth noting that the peak concentrations of PAEs and NPPs were found when the haze occurred in autumn. Principal component analysis (PCA) suggested the diverse applications of PAEs and NPPs in the indoor environment. The hazard index (HI) values observed in this study were all below international guidelines (<1); however, the average carcinogenic risk (CR) values for some compounds exceeded acceptable levels (One in a million), which raised concerns about the possibility of carcinogenicity for people living indoors for long periods of time in cold regions.


Assuntos
Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análise , Material Particulado/análise , Estações do Ano , Ácidos Ftálicos/análise , Temperatura , Umidade , China , Ésteres/análise
7.
Sci Total Environ ; 848: 157724, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35914606

RESUMO

The study of the fate of organophosphate esters (OPEs) in the interior environment is vital because of the growing use of OPEs. Organic films on glass are both sink and sources of indoor pollutants. Indoor window films have been employed as passive air samplers to collect OPEs in the indoor air. Nevertheless, little is known about the development and equilibrium condition of OPEs on indoor window films during the film formation process. In this study, the concentrations of twelve OPEs in indoor window films from different buildings on a university campus and the growth thickness of the films as a function of sampling time were investigated in different seasons. Ten out of the 12 OPEs were detected in window film with >50 % frequency. Tris (2-chloroethyl) phosphate (TCEP) and tris (1-chloro-2-propyl) phosphate (TCPP), which are chlorinated and toxic OPEs, were the dominant OPEs found in the winter. The majority of OPEs in window films exhibited linear growth patterns within 77 days. Temperature, humidity, ventilation, and seasonality all affected the concentrations of various OPEs in the window films. Low molecular weight OPEs, such as tri-n-butyl phosphate and TCEP, attained equilibrium between indoor air and window films within 49 or 77 days. The indoor air concentrations of OPEs were estimated from their film concentrations based on the theoretical approach for the passive air sampler. In winter, the predicted gas-phase air concentrations of OPEs (3.7 ng/m3 for TECP) were significantly lower than or comparable to summer (11 ng/m3, p < 0.05). To the best of our knowledge, this is the first attempt to combine uncertainty and sensitivity analysis to understand the behaviors of OPEs in indoor film and air.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Monitoramento Ambiental , Poluentes Ambientais/análise , Ésteres/análise , Retardadores de Chama/análise , Humanos , Organofosfatos/análise , Fosfatos/análise , Fosfinas
8.
Environ Sci Process Impacts ; 24(10): 1577-1615, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35244108

RESUMO

Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.


Assuntos
Produtos Biológicos , Poluentes Ambientais , Humanos , Mudança Climática , Poluentes Orgânicos Persistentes , Ecossistema , Poluentes Ambientais/análise , Microplásticos , Plásticos , Regiões Árticas
9.
Environ Sci Technol ; 56(5): 2959-2967, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35148085

RESUMO

22 alkylated polycyclic aromatic hydrocarbons (alk-PAHs) were characterized in ambient air individually for the first time in urban and semi-urban locations in Toronto, Canada. Five unsubstituted PAHs were included for comparison. Results from the measurements were used to estimate benzo[a]pyrene equivalent toxicity (BaPeq) of individual compounds in order to investigate the significance of a single compound in contributing to the overall toxic equivalency (TEQ) of air mixtures. To determine which compounds merit further investigation, BaPeq values of individual compounds were compared to the measured BaP toxicity. Our results showed that both unsubstituted and alkylated PAHs were more abundant in the urban area (38 and 30%, respectively). Benzo[a]pyrene levels at the urban location exceeded Ontario's 24 h guideline (40% of the events), and on average, it was 5 times higher than that at the semi-urban area. Gas-phase two- and three-ring compounds contributed up to 39% (urban) and 76% (semi-urban) of the TEQ of all compounds analyzed. Some alk-PAHs such as 7,12-dimethylbenzo[a]anthracene had a huge impact on the toxicity of urban air, and its BaPeq was on average 8 times higher than that of BaP. We emphasize that the toxic impact of alkylated and gaseous PAHs, which is not routinely included in many air monitoring programs, is significant and should not be neglected.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Benzo(a)pireno , Canadá , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Receptores Proteína Tirosina Quinases
10.
Nature ; 600(7889): 456-461, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34912090

RESUMO

Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Retardadores de Chama/efeitos adversos , Substâncias Perigosas/análise , Internacionalidade , Organofosfatos/efeitos adversos , Ar/análise , Poluentes Atmosféricos/química , Poluentes Atmosféricos/intoxicação , Animais , Bioacumulação , Cidades/estatística & dados numéricos , Simulação por Computador , Ecossistema , Retardadores de Chama/análise , Retardadores de Chama/intoxicação , Substâncias Perigosas/efeitos adversos , Substâncias Perigosas/química , Substâncias Perigosas/intoxicação , Humanos , Intoxicação por Organofosfatos , Organofosfatos/análise , Organofosfatos/química , Medição de Risco
11.
Sci Total Environ ; 786: 147484, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33984702

RESUMO

Many household and personal care chemicals (HPCCs) are of environmental concern due to their potential toxicity to humans and wildlife. However, few studies investigate the spatiotemporal variations and fate of HPCCs in large-scale river systems. Here, river water and sediment samples from the Songhua River in Northeast China were analyzed for seven classes of HPCCs. Correlation analysis suggested similar sources and environmental behavior for compounds from the same HPCC classes. In the river water, the concentrations of most HPCCs in the cold season were significantly higher than that of the warm season (p < 0.01). Significantly higher levels of target compounds were found in the downstream water samples of a city, suggesting the influence of human activities on the distributions of HPCCs. The concentrations and distributions of most HPCCs were controlled by primary emission sources. The derived dissolved concentrations of HPCCs suggested that small amounts of caffeine and parabens were partitioned onto particles, while large amounts of many other HPCCs were bound to the particle phase. Water-sediment distribution coefficients (log Kd) ranged from 1.59 for caffeine to 3.95 for benzalkonium chloride-C14. This work presents new insights into the environmental behavior of HPCCs and the factors affecting their fate in river systems.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Humanos , Rios , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 775: 145109, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631575

RESUMO

The long-term time trends of atmospheric pollutants at eight Arctic monitoring stations are reported. The work was conducted under the Arctic Monitoring and Assessment Programme (AMAP) of the Arctic Council. The monitoring stations were: Alert, Canada; Zeppelin, Svalbard; Stórhöfði, Iceland; Pallas, Finland; Andøya, Norway; Villum Research Station, Greenland; Tiksi and Amderma, Russia. Persistent organic pollutants (POPs) such as α- and γ-hexachlorocyclohexane (HCH), polychlorinated biphenyls (PCBs), α-endosulfan, chlordane, dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) showed declining trends in air at all stations. However, hexachlorobenzene (HCB), one of the initial twelve POPs listed in the Stockholm Convention in 2004, showed either increasing or non-changing trends at the stations. Many POPs demonstrated seasonality but the patterns were not consistent among the chemicals and stations. Some chemicals showed winter minimum and summer maximum concentrations at one station but not another, and vice versa. The ratios of chlordane isomers and DDT species showed that they were aged residues. Time trends of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were showing decreasing concentrations at Alert, Zeppelin and Andøya. The Chemicals of Emerging Arctic Concern (CEAC) were either showing stable or increasing trends. These include methoxychlor, perfluorohexane sulfonic acid (PFHxS), 6:2 fluorotelomer alcohol, and C9-C11 perfluorocarboxylic acids (PFCAs). We have demonstrated the importance of monitoring CEAC before they are being regulated because model calculations to predict their transport mechanisms and fate cannot be made due to the lack of emission inventories. We should maintain long-term monitoring programmes with consistent data quality in order to evaluate the effectiveness of chemical control efforts taken by countries worldwide.

13.
Environ Pollut ; 271: 116232, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412446

RESUMO

Polycyclic aromatic compounds (PACs) in Canadian air and deposition were examined at the national scale for the first time in over twenty-five years. Air concentrations spanned four orders of magnitude, and were highest near industrial emitters and lowest in the Arctic. Declines in unsubstituted PAHs were observed at locations close to industrial facilities that had reduced emissions, but trends elsewhere were modest or negligible. Retene concentrations are increasing at several locations. Ambient concentrations of benzo[a]pyrene exceeded Ontario's health-based guideline in many urban/industrial areas. The estimated toxicity of the ambient PAC mixture increased by up to a factor of six when including compounds beyond the US EPA PAHs. Knowledge of PAC deposition is limited to the Laurentian Great Lakes and Athabasca Oil Sands regions. The atmosphere remained a net source of PAHs to the Great Lakes, though atmospheric inputs were decreasing with halving times of 26-30 years. Chemical transport modelling substantially overestimated wet deposition, but model performance is unknown for dry deposition. Sources from Asia, Europe and North America contributed to Arctic and Sub-Arctic concentrations, whereas transboundary or long-range transport have not been assessed outside Canada's north. Climate-related impacts from re-emission and forest fires were implicated in maintaining air concentrations in the high Arctic that were not consistent with global emissions reductions. Industrial emission decreases were substantial at the national scale, but their influence on the environment was limited to areas near relevant facilities. When examined through the lens of ambient levels at the local scale, evidence suggested that contributions from residential wood combustion and motor vehicles were smaller and larger, respectively, than those reported in national inventories. Future work aimed at characterizing PACs beyond the EPA PAHs, improving measurement coverage, elucidating deposition phenomena, and refining estimates of source contributions would assist in reducing remaining knowledge gaps about PACs in Canada.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Atmosféricos/análise , Regiões Árticas , Ásia , Canadá , Monitoramento Ambiental , Europa (Continente) , América do Norte , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise
14.
Environ Sci Technol ; 55(4): 2254-2264, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33512990

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are of high concern to public health due to their carcinogenic and mutagenic properties. Here, we present the first comprehensive and quantitative analysis of sources, potential source regions according to source sectors and source-related human health risks of multi-year atmospheric measurements of PAHs in the Canadian Great Lakes Basin (GLB). The highest PAH concentrations were observed at a rural residential site (Egbert), followed by two regionally representative remote sites [Point Petre (PPT) and Burnt Island]. The levels of most PAHs in the GLB atmosphere significantly decreased between 1997 and 2017, broadly consistent with the decreasing trends of anthropogenic emissions. Coal, liquid fossil fuel, and biomass burning were the most common potential sources. The potential source regions for most source sectors were identified south or southwest of the sampling sites. Risk assessment suggests potential health risks associated with the inhalation of atmospheric PAHs. On a positive note, health risks from coal combustion, liquid fossil fuel combustion, and petrogenic sources at PPT significantly decreased, directly demonstrating the success of emission control in reducing health impacts. In contrast, the health risk from forest fire-related PAH emissions may play an increasing role in the future due to climate change.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Canadá , China , Monitoramento Ambiental , Humanos , Lagos , Hidrocarbonetos Policíclicos Aromáticos/análise
15.
Environ Pollut ; 269: 116115, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33279269

RESUMO

Alberta's oil sands tailings ponds are suspected to be a source of fugitive emissions of polycyclic aromatic compounds (PACs) to the atmosphere. Here we report, for the first time, fluxes of 6 parent and 21 alkylated PACs based on the measured co-located air and water concentrations using a two-film fugacity-based model (FUG), an inverse dispersion model (DISP) and a simple box model (BOX). Air samples were collected at the Suncor Tailings Pond 2/3 using a high volume air sampler from the "pond" and towards the pond ("non-pond") directions separately. Mean ∑27PACs in air from the "pond" direction was greater than the "non-pond" direction by a factor of 17. Water-air fugacity ratio of 20 PACs quantifiable in water indicated net volatilization from water. Dispersion and box model results also indicated upward fluxes of 22 PACs. Correlation between the estimated flux results of BOX and DISP model was statistically significant (r = 0.99 and p < 0.05), and correlation between FUG and DISP results ranged from 0.54 to 0.85. In this first-ever assessment of PAC fluxes from tailings pond, the three models confirmed volatilization fluxes of PACs indicating Suncor Tailings Pond 2/3 is a source of PAC emissions to the atmosphere. This study addressed a key data gap identified in the Joint Oil Sands Monitoring Emissions Inventory Compilation Report (Government of Alberta and Canada, 2016) which is the lack of consistent real-world tailings pond fugitive emission monitoring of organic chemicals. Our findings highlight the need for measurements from other tailings ponds to determine their overall contribution in releasing PACs to the atmosphere. This paper presents a practical method for estimating PAC emissions from other tailings ponds, which can provide a better understanding of these fugitive emissions, and thereby help to improve the overall characterization of emissions in the oil sands region.


Assuntos
Compostos Policíclicos , Lagoas , Alberta , Campos de Petróleo e Gás , Compostos Orgânicos
16.
Environ Int ; 143: 106008, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768183

RESUMO

Limited studies focus on the effectiveness of regulatory actions on changes in sources and temporal trends of human health risks for trace elements in atmospheric particles < 10 µm (PM10). To address this knowledge gap, PM10 samples were collected at three stations in the Great Lakes Basin over a thirty-year time span and analyzed for 19 representative elements. Temporal trends of trace elements in PM10 were derived using the Digital Filtration Technique and sources of these elements were determined using multiple statistical techniques, namely enrichment factor analysis, positive matrix factorization (PMF) and potential source contribution function (PSCF). Non-carcinogenic and carcinogenic risks by chronic exposure were assessed using US EPA reference concentrations and inhalation unit risk. Our results showed a strong relationship between element concentrations and local populations, which suggested that the emissions of trace elements were anthropogenically-related and was confirmed by the enrichment factor analysis. The concentrations of most elements were significantly decreasing with halving times ranging from 10 to 48 years in response to national and international regulatory actions. Specific origins of atmospheric trace elements were from the copper refining industry, refuse incineration, coal combustion, vehicle emissions, oil/coal-fired power plants, and crustal/soil dust. Potential source region analysis indicates dominant sources south of the sampling sites in the US, associated with a higher population and more industrial and transportation activities. The possibility of non-cancer health effects due to inhalation were mostly within acceptable levels. However, potential cancer risk posed by inhalation of some elements cannot be ignored, with values approaching or higher than the acceptable level. Considering that the sampling locations are remote and regionally-representative, our finding emphasizes the importance of continued monitoring of metals in air to assess the effectiveness of control strategies.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Humanos , Lagos , Material Particulado/análise , Oligoelementos/análise , Emissões de Veículos/análise
17.
Environ Sci Technol ; 53(15): 8543-8552, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31339294

RESUMO

The concentrations of perfluoroalkyl acids (PFAAs) were determined in precipitation from three locations across the Great Lakes between 2006 and 2018 and compared to those in surface water. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations generally decreased in precipitation, likely in response to phase-outs/regulatory actions. In comparison, concentrations of shorter-chained PFAA, which are not regulated in Canada did not decrease and those of perfluorohexanoate and perfluorobutanoate (PFBA) recently increased, which could be due to their use as replacements, as the longer-chained PFAAs are being phased-out by industry. PFOS and PFOA concentrations were greater in Lake Ontario precipitation than in precipitation from more remote locations. In comparison, PFBA concentrations were comparable across locations, suggesting greater atmospheric transport either through its more volatile precursors and/or directly in association with particles/aerosols. In Lake Ontario, the comparison of PFAAs in precipitation to those in surface water provides evidence of sources (e.g., street dust and wastewater effluent) in addition to wet deposition to surface water, whereas wet deposition appears to be dominant in Lakes Huron and Superior. Our results suggest that source control of shorter-chained PFAAs may be slow to be reflected in environmental concentrations due to emissions far from the location of detection and continued volatilization from existing in-use products and waste streams.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Lagos , Ontário , Água
18.
Environ Sci Technol ; 53(5): 2375-2382, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30746937

RESUMO

Two decades of atmospheric measurements of polycyclic aromatic hydrocarbons (PAHs) were conducted at three Arctic sites, i.e., Alert, Canada; Zeppelin, Svalbard; and Pallas, Finland. PAH concentrations decrease with increasing latitude in the order of Pallas > Zeppelin > Alert. Forest fire was identified as an important contributing source. Three representative PAHs, phenanthrene (PHE), pyrene (PYR), and benzo[ a]pyrene (BaP) were selected for the assessment of their long-term trends. Significant decline of these PAHs was not observed contradicting the expected decline due to PAH emission reductions. A global 3-D transport model was employed to simulate the concentrations of these three PAHs at the three sites. The model predicted that warming in the Arctic would cause the air concentrations of PHE and PYR to increase in the Arctic atmosphere, while that of BaP, which tends to be particle-bound, is less affected by temperature. The expected decline due to the reduction of global PAH emissions is offset by the increment of volatilization caused by warming. This work shows that this phenomenon may affect the environmental occurrence of other anthropogenic substances, such as more volatile flame retardants and pesticides.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Regiões Árticas , Canadá , Monitoramento Ambiental , Finlândia , Svalbard
19.
Environ Sci Process Impacts ; 21(1): 74-88, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30575830

RESUMO

The occurrence and potential sources of synthetic musk compounds (SMCs) in the urban and surrounding environment were investigated. We analyzed air, soils and surface waters from a wide array of land-use types and urban densities including air from wastewater treatment plants (WWTPs), indoor, urban, rural, and remote Arctic sites; surface waters from urban and rural tributaries; and effluents of three WWTPs. In air, the median sum concentration of six selected polycyclic musks (Σ6PCMs) (i.e., galaxolide, tonalide, cashmeran, celestolide, phantolide, traseolide) were the highest from WWTP on-site > indoor > urban > WWTP off-site > rural. SMCs were not found in remote Arctic air indicating low potential for long-range atmospheric transport. SMCs were not found in soils, likely because of their high volatility and fast biodegradation rate. Galaxolide (HHCB) and tonalide (AHTN) were the two most abundant SMCs in air, tributaries and WWTP effluents. Σ6PCM concentrations in air taken along urban-rural transects and in tributary water were positively correlated with population density. In WWTP on-site air, trace levels of the toxic nitro-musks, namely musk xylene and musk ketone were detected and macrocyclic musks accounted for ∼10% of the total SMCs measured. In WWTP effluents, the concentrations of Σ6PCMs were proportional to the population served. We conclude that sources of SMCs to the outdoor urban environment and hence the surrounding region, originate from releases from indoor air, and temperature-dependent volatilization from WWTPs during treatment.


Assuntos
Poluentes Ambientais/análise , Águas Residuárias/química , Xilenos/análise , Regiões Árticas , Benzopiranos/análise , Benzopiranos/química , Biodegradação Ambiental , Cidades , Monitoramento Ambiental , Poluentes Ambientais/química , Volatilização , Xilenos/química
20.
Environ Health Perspect ; 126(8): 84502, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30235423

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, [Formula: see text]. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science-policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs. https://doi.org/10.1289/EHP4158.


Assuntos
Exposição Ambiental/prevenção & controle , Poluentes Ambientais , Poluição Ambiental/prevenção & controle , Fluorocarbonos , Monitoramento Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA