Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338651

RESUMO

The epidermal growth factor receptor (EGFR) is a common driver of non-small cell lung cancer (NSCLC). Clathrin-mediated internalization (CMI) sustains EGFR signaling. AXL is associated with resistance to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutated (EGFRM) NSCLC. We investigated the effects of Leucine zipper downregulated in cancer-1 (LDOC1) on EGFR CMI and NSCLC treatment. Coimmunoprecipitation, double immunofluorescence staining, confocal microscopy analysis, cell surface labelling assays, and immunohistochemistry studies were conducted. We revealed that LDOC1 interacts with clathrin adaptors through binding motifs. LDOC1 depletion promotes internalization and plasma membrane recycling of EGFR in EGFRM NSCLC PC9 and HCC827 cells. Membranous and cytoplasmic EGFR decreased and increased, respectively, in LDOC1 (-) NSCLC tumors. LDOC1 depletion enhanced and sustained activation of EGFR, AXL, and HER2 and enhanced activation of HER3 in PC9 and HCC827 cells. Sensitivity to first-generation EGFR-TKIs (gefitinib and erlotinib) was significantly reduced in LDOC1-depleted PC9 and HCC827 cells. Moreover, LDOC1 downregulation was significantly associated (p < 0.001) with poor overall survival in patients with EGFRM NSCLC receiving gefitinib (n = 100). In conclusion, LDOC1 may regulate the efficacy of first-generation EGFR-TKIs by participating in the CMI of EGFR. Accordingly, LDOC1 may function as a prognostic biomarker for EGFRM NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Zíper de Leucina , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Mutação , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834377

RESUMO

The herbal medicine perilla leaf extract (PLE) exhibits various pharmacological properties. We showed that PLE inhibits the viability of oral squamous cell carcinoma (OSCC) cells. HPLC analysis revealed that caffeic acid (CA) and rosmarinic acid (RA) are the two main phenols in PLE, and reduced OSCC cell viability in a dose-dependent manner. The optimal CA/RA combination ratio was 1:2 at concentrations of 300-500 µM but had no synergistic inhibitory effect on the viability of OSCC cells. CA, RA, or their combination effectively suppressed interleukin (IL)-1ß secretion by OSCC OC3 cells. Long-term treatment with CA and CA/RA mixtures, respectively, induced EGFR activation, which might cause OC3 cells to become EGFR-dependent and consequently increased the sensitivity of OC3 cells to a low dose (5 µM) of the EGFR tyrosine kinase inhibitor gefitinib. Chronic treatment with CA, RA, or their combination exhibited an inhibitory effect more potent than that of low-dose (1 µM) cisplatin on the colony formation ability of OSCC cells; this may be attributed to the induction of apoptosis by these treatments. These findings suggest that perilla phenols, particularly CA and RA, can be used as adjuvant therapies to improve the efficacy of chemotherapy and EGFR-targeted therapy in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Perilla , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Receptores ErbB , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
3.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120999

RESUMO

Poor oral hygiene (POH) is associated with oral squamous cell carcinoma (OSCC). Oral microbes often proliferate due to POH. Array data show that LDOC1 plays a role in immunity against pathogens. We investigated whether LDOC1 regulates the production of oral microbe-induced IL-1ß, an oncogenic proinflammatory cytokine in OSCC. We demonstrated the presence of Candida albicans (CA) in 11.3% of OSCC tissues (n = 80). CA and the oral bacterium Fusobacterium nucleatum stimulate higher levels of IL-1ß secretion by LDOC1-deficient OSCC cells than by LDOC1-expressing oral cells. CA SC5314 increased OSCC incidence in 4-NQO (a synthetic tobacco carcinogen) and arecoline-cotreated mice. Loss and gain of LDOC1 function significantly increased and decreased, respectively, CA SC5314-induced IL-1ß production in oral and OSCC cell lines. Mechanistic studies showed that LDOC1 deficiency increased active phosphorylated Akt upon CA SC5314 stimulation and subsequent inhibitory phosphorylation of GSK-3ßS9 by activated Akt. PI3K and Akt inhibitors and expression of the constitutively active mutant GSK-3ßS9A significantly reduced the CA SC5314-stimulated IL-1ß production in LDOC1-deficient cells. These results indicate that the PI3K/Akt/pGSK-3ß signaling pathway contributes to LDOC1-mediated inhibition of oral microbe-induced IL-1ß production, suggesting that LDOC1 may determine the pathogenic role of oral microbes in POH-associated OSCC.

4.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816951

RESUMO

In renal cell carcinoma (RCC), interleukin (IL)-1ß may be a pro-metastatic cytokine. However, we have not yet noted the clinical association between tumoral expression or serum level of IL-1ß and RCC in our patient cohort. Herein, we investigate molecular mechanisms elicited by IL-1ß in RCC. We found that IL-1ß stimulates substantial monocyte chemoattractant protein (MCP)-1 production in RCC cells by activating NF-kB and AP-1. In our xenograft RCC model, intra-tumoral MCP-1 injection down-regulated Ki67 expression and reduced tumor size. Microarray analysis revealed that MCP-1 treatment altered protein-folding processes in RCC cells. MCP-1-treated RCC cells and xenograft tumors expressed MCP-1-induced protein (MCPIP) and molecules involved in endoplasmic reticulum (ER) stress-mediated apoptosis, namely C/EBP Homologous Protein (CHOP), protein kinase-like ER kinase (PERK), and calnexin (CNX). ER stress-mediated apoptosis in MCP-1-treated RCC cells was confirmed using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay. Moreover, ectopic MCPIP expression increased PERK expression in Human embryonic kidney (HEK)293 cells. Our meta-analysis revealed that low MCP-1 levels reduce 1-year post-nephrectomy survival in patients with RCC. Immunohistochemistry indicated that in some RCC biopsy samples, the correlation between MCP-1 or MCPIP expression and tumor stages was inverse. Thus, MCP-1 and MCPIP potentially reduce the IL-1ß-mediated oncogenic effect in RCC; our findings suggest that ER stress is a potential RCC treatment target.


Assuntos
Apoptose , Carcinoma de Células Renais/metabolismo , Quimiocina CCL2/metabolismo , Estresse do Retículo Endoplasmático , Interleucina-1beta/metabolismo , Neoplasias Renais/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-1beta/sangue , Neoplasias Renais/sangue , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Proteínas de Neoplasias/metabolismo , Prognóstico , Dobramento de Proteína , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancers (Basel) ; 11(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634502

RESUMO

Meta-analysis revealed that Leucine Zipper Down-Regulated In Cancer 1 (LDOC1) increased methylation more in people with lung tumors than in those who were healthy and never smoked. Quantitative methylation-specific PCR revealed that cigarette smoke condensate (CSC) exposure drives LDOC1 promoter hypermethylation and silence in human bronchial cells. Immunohistochemistry studies showed that LDOC1 downregulation is associated with poor survival of patients with lung cancer. Loss and gain of LDOC1 functions enhanced and attenuated aggressive phenotypes in lung adenocarcinoma A549 and non⁻small cell lung carcinoma H1299 cell lines, respectively. We found that LDOC1 deficiency led to reinforcing a reciprocal loop of IL-6/JAK2/STAT3, through which LDOC1 mediates the cancer progression. LDOC1 knockdown considerably augmented tumorigenesis and the phosphorylation of JAK2 and STAT3 in vivo. Results from immunoprecipitation and immunofluorescent confocal microscopy indicated that LDOC1 negatively regulates JAK2 activity by forming multiple protein complexes with pJAK2 and E3 ubiquitin-protein ligase LNX1, and in turn, LDOC1 targets pJAK2 to cause ubiquitin-dependent proteasomal degradation. LDOC1 deficiency attenuates the interactions between LNX1 and pJAK2, leading to ineffective ubiquitination of pJAK2, which activates STAT3. Overall, our results elucidated a crucial role of LDOC1 in lung cancer and revealed how LDOC1 acts as a bridge between tobacco exposure and the IL-6/JAK2/STAT3 loop in this human malignancy.

6.
Oncotarget ; 9(1): 361-374, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29416619

RESUMO

Epigenome aberrations have been observed in tobacco-associated human malignancies. (-)-epigallocatechin-3-gallate (EGCG) has been proven to modulate gene expression by targeting DNA methyltransferases (DNMTs) through a proposed mechanism involving the gallate moiety of EGCG. We show that gallic acid (GA) changes the methylome of lung cancer and pre-malignant oral cell lines and markedly reduces both nuclear and cytoplasmic DNMT1 and DNMT3B within 1 week. GA exhibits stronger cytotoxicity against the lung cancer cell line H1299 than EGCG. We found that GA reactivates the growth arrest and DNA damage-inducible 45 (GADD45) signaling pathway may through the demethylation of CCNE2 and CCNB1 in H1299 cells. To improve the epigenetic anti-cancer activities of oolong tea, we identified a fungus, Aspergillus sojae which can efficiently increase the GA content in oolong tea via a 2-week fermentation process. The fungus dramatically increased GA up to 44.8 fold in the post-fermentation oolong tea extract (PFOTE), resulting in enhanced demethylation effects and a significant reduction in the nuclear abundances of DNMT1, DNMT3A, and DNMT3B in lung cancer cell lines. PFOTE also showed stronger anti-proliferation activities than oolong tea extract (OTE) and increased sensitivity to cisplatin in H1299 cells. In summary, we demonstrate the potent inhibitory effects of GA on the activities of DNMTs and provide a strong scientific foundation for the use of specialized fermented oolong tea high in GA as an effective dietary intervention strategy for tobacco-associated cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA