RESUMO
Recently, the high proportion of methicillin-resistant Staphylococcus aureus infections worldwide has highlighted the urgent need for novel antibiotics to combat this crisis. The recent progress in computational techniques for use in health and medicine, especially artificial intelligence (AI), has created new and potential approaches to combat antibiotic-resistant bacteria, such as repurposing existing drugs, optimizing current agents, and designing novel compounds. Halicin was previously used as a diabetic medication, acting as a c-Jun N-terminal protein kinase (JNK) inhibitor, and has recently demonstrated unexpected antibacterial activity. Although previous efforts have highlighted halicin's potential as a promising antibiotic, evidence regarding its effectiveness against clinical strains remains limited, with insufficient proof of its clinical applicability. In this study, we sought to investigate the antibacterial activity of halicin against MRSA clinical strains to validate its clinical applicability, and a C. elegans model infected by MRSA was employed to evaluate the in vivo effect of halicin against MRSA. Our findings revealed the antibacterial activity of halicin against methicillin-resistant S. aureus clinical strains with MICs ranging from 2 to 4 µg/mL. Our study is also the first work to evaluate the in vivo effect of halicin against S. aureus using a C. elegans model, supporting its further development as an antibiotic.
RESUMO
This study utilizes a Mueller matrix-based system to extract accurate glucose levels from human fingertips, addressing challenges in skin complexity. Integration of domain knowledge and data science aims to enhance prediction accuracy using a Random Forest model. The primary goal is to improve glucose level predictions by selecting effective features based on the Pearson product-moment correlation coefficient (PPMCC). The interpolation compensates for delayed glucose concentration. This study integrates domain knowledge and data science, combining a Mueller matrix-based system and a random forest model. It is noted that 16 effective features were identified from 27 test points collected from a healthy volunteer in the laboratory. These features were divided into training and prediction sets in a ratio of 8:2. As a result, the regression coefficient, R2, was 0.8907 and the mean absolute relative difference (MARD) was 6.8%, respectively. This significantly improves prediction accuracy, demonstrating the model's robustness and reliability in accurately forecasting outcomes based on the identified features. In addition, in the Institutional Review Board (IRB) tests at NCKU's hospital, all data passed the same preprocessing and model. The measurement results from an individual diabetic patient demonstrate high accuracy for blood glucose concentrations below 150â mg/dL, with acceptable deviation at higher levels and no severe error zones. Over a three-month period, data from the participating diabetic patient showed a MARD of 4.44% with the R2 of 0.836, and the other patient recorded a MARD of 7.79% with the R2 of 0.855. The study shows the proposed approach accurately extracts glucose levels. Integrating domain knowledge, data science, and effective strategies significantly improves prediction accuracy.
RESUMO
BACKGROUND: Vancomycin-variable enterococci (VVE) are vanA-carrying Enterococcus faecium that are phenotypically susceptible to vancomycin and can only be detected using molecular methods, leading to the possibility of treatment failure and posing threats to infection control. This study aimed to determine the prevalence of VVE and its associated clinical risk factors. METHODS: This retrospective study was conducted in two hospitals in southern Taiwan. Patients with phenotypically vancomycin-susceptible E. faecium bacteremia were enrolled between 2017 and 2021. VVEs were defined as isolates harboring the vanA gene that were phenotypically susceptible to vancomycin. Vancomycin-susceptible E. faecium (VSE) isolates were phenotypically susceptible to vancomycin and lacked vanA or vanB genes. RESULTS: Of the 142 enrolled patients, 121 (85.2%) had VSE and 21 (14.8%) had VVE. Resistance rates to penicillin, tetracycline, and fosfomycin were higher in VVE isolates. Malignancy (adjusted odds ratio [aOR] = 4.87; 95% confidence interval [CI] 1.54-15.41, p = 0.007) and central venous catheter usage (aOR = 4.69; 95% CI 1.49-14.78, p = 0.008) were the independent risk factors associated with VVE bacteremia. Being male (aOR = 0.12, CI 0.03-0.44, p = 0.002) was less likely to be associated with VVE bacteremia. Although VVE was not associated with 30-day mortality (38.1% [VVE] vs. 35.5% [VSE], p = 0.822), one case of subsequent vancomycin-resistant enterococci infection in the VVE group with vancomycin treatment (4.8%, 1/21) was identified, which led to subsequent mortality. CONCLUSIONS: The prevalence of VVE was high among E. faecium isolates with vancomycin-susceptible phenotypes in southern Taiwan. Although the current study revealed that VVE bacteremia was not associated with poor clinical outcome, further multicenter surveillance survey is recommended to evaluate the possible impact of VVE on public health in Taiwan.
RESUMO
Indole-3-acetic acid (IAA), a protein-bound uremic toxin resulting from gut microbiota-driven tryptophan metabolism, increases in hemodialysis (HD) patients. IAA may induce endothelial dysfunction, inflammation, and oxidative stress, elevating cardiovascular and cognitive risk in HD patients. However, research on the microbiome-IAA association is limited. This study aimed to explore the gut microbiome's relationship with plasma IAA levels in 72 chronic HD patients aged over 18 (August 2016-January 2017). IAA levels were measured using tandem mass spectrometry, and gut microbiome analysis utilized 16s rRNA next-generation sequencing. Linear discriminative analysis effect size and random forest analysis distinguished microbial species linked to IAA levels. Patients with higher IAA levels had reduced microbial diversity. Six microbial species significantly associated with IAA levels were identified; Bacteroides clarus, Bacteroides coprocola, Bacteroides massiliensi, and Alisteps shahii were enriched in low-IAA individuals, while Bacteroides thetaiotaomicron and Fusobacterium varium were enriched in high-IAA individuals. This study sheds light on specific gut microbiota species influencing IAA levels, enhancing our understanding of the intricate interactions between the gut microbiota and IAA metabolism.
RESUMO
CONTEXT: Type 2 diabetes (T2D) is the major contributor to chronic kidney disease and end-stage kidney disease (ESKD). The influence of trimethylamine N-oxide (TMAO) on kidney outcomes in T2D remains unclear. OBJECTIVE: To examine the association between fasting serum TMAO levels and adverse kidney outcomes in patients with T2D. METHODS: Between October 2016 and June 2020, patients with T2D were recruited and monitored every 3 months until December 2021. Serum TMAO levels were assessed using liquid chromatography-mass spectrometry. The primary kidney outcomes were doubling of serum creatinine levels or progression to ESKD necessitating dialysis; the secondary kidney outcome was a rapid 30% decline in estimated glomerular filtration rate within 2 years. All-cause mortality was also evaluated. RESULTS: Among the 440 enrolled patients with T2D, those in the highest serum TMAO tertile (≥0.88â µM) were older, had a longer diabetes duration, elevated blood urea nitrogen, and lower estimated glomerular filtration rate. Over a median follow-up period of 4 years, 26 patients (5.9%) had a doubling of serum creatinine level or progression to ESKD. After propensity score weighting, the patients in the highest serum TMAO tertile had a 6.45-fold increase in the risk of doubling of serum creatinine levels or progression to ESKD and 5.86-fold elevated risk of rapid decline in kidney function compared with those in the lowest tertile. Additionally, the stepwise increase in serum TMAO was associated with all-cause mortality. CONCLUSION: Patients with T2D with elevated circulating TMAO levels are at higher risk of doubling serum creatinine, progressing to ESKD, and mortality. TMAO is a potential biomarker for kidney function progression and mortality in patients with T2D.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Progressão da Doença , Taxa de Filtração Glomerular , Falência Renal Crônica , Metilaminas , Humanos , Metilaminas/sangue , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Nefropatias Diabéticas/mortalidade , Nefropatias Diabéticas/sangue , Falência Renal Crônica/mortalidade , Falência Renal Crônica/sangue , Biomarcadores/sangue , Creatinina/sangue , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/sangue , Seguimentos , Prognóstico , Rim/fisiopatologiaRESUMO
Indoor recirculating aquaculture systems make light control possible and enable the usage of specific coloured lights to promote the growth and immunity of aquaculture species. Five different LED wavelengths (white light [460 nm], red light [622 nm], green light [517 nm], blue light [467 nm], and the dark) were used in this study to evaluate growth and immunity in the glass eel stage of two high-valued anguillid species, Japanese eel (Anguilla japonica) and giant mottled eel (A. marmorata). There were no significant differences in growth of the Japanese eel among the groups after 12 weeks of feeding (p > 0.05); the survival rate of each group was over 95%. The giant mottled eel showed better growth in total length and body weight in the red light and dark groups (p < 0.05). Expression levels of immune-related genes were not significantly different between each group of the Japanese eel and the giant mottled eel (p > 0.05). The growth of the Japanese glass eel was not significantly sensitive to different LED wavelengths, while the giant mottled glass eel showed better growth under red light and dark environments. Neither eel species showed significant differences in innate immunity under different LED wavelengths.
RESUMO
Recanalization therapy is the most effective treatment for eligible patients with acute ischemic stroke (AIS). Gut microbiota are involved in the pathological mechanisms and outcomes of AIS. However, the association of gut microbiota features with adverse recanalization therapy outcomes remains unclear. Herein, we investigated gut microbiota features associated with neurological deficits in patients with AIS after recanalization therapy and whether they predict the patients' functional outcomes. We collected fecal samples from 51 patients with AIS who received recanalization therapy and performed 16S rRNA gene sequencing (V3-V4). We compared the gut microbiota diversity and community composition between mild to moderate and severe disability groups. Next, the characteristic gut microbiota was compared between groups, and we noted that the characteristic gut microbiota in patients with mild to moderate disability included Bilophila, Butyricimonas, Oscillospiraceae_UCG-003, and Megamonas. Moreover, the relative abundance of Bacteroides fragilis, Fusobacterium sp., and Parabacteroides gordonii was high in patients with severe disability. The characteristic gut microbiota was correlated with neurological deficits, and areas under the receiver operating characteristic curves confirmed that the characteristic microbiota predicted adverse recanalization therapy outcomes. In conclusion, gut microbiota characteristics are correlated with recanalization therapy outcomes in patients with AIS. Gut microbiota may thus be a promising biomarker associated with early neurological deficits and predict recanalization therapy outcomes.
RESUMO
BACKGROUND: The issue of carbapenem-resistant Escherichia coli was aggravated yearly. The previous studies reported the varied but critical epidemiology of carbapenem-resistant E. coli among which the carbapenemase-producing strains were regarded as one of the most notorious issues. AS101, an organic tellurium-containing compound undergoing clinical trials, was revealed with antibacterial activities. However, little is known about the antibacterial effect of AS101 against carbapenemase-producing E. coli (CPEC). MATERIALS AND METHODS: The minimum inhibitory concentration (MIC) of AS101 against the 15 isolates was examined using a broth microdilution method. The scanning electron microscopy, pharmaceutical manipulations, reactive oxygen species level, and DNA fragmentation assay were carried out to investigate the antibacterial mechanism. The sepsis mouse model was employed to assess the in vivo treatment effect. RESULTS: The blaNDM (33.3%) was revealed as the dominant carbapenemase gene among the 15 CPEC isolates, followed by the blaKPC gene (26.7%). The MICs of AS101 against the 15 isolates ranged from 0.5 to 32 µg/ml, and 99.9% of bacterial eradication was observed at 8 h, 4 h, and 2 h for 1×, 2×, and 4 × MIC, respectively. The mechanistic investigations suggest that AS101 would enter the bacterial cell, and induce ROS generation, leading to DNA fragmentation. The in vivo study exhibited that AS101 possessed a steady treatment effect in a sepsis mouse model, with an up to 83.3% of survival rate. CONCLUSION: The in vitro activities, mechanisms, and in vivo study of AS101 against CPEC were unveiled. Our finding provided further evidence for the antibiotic development of AS101.
RESUMO
(1) Background: Non-alcoholic fatty liver disease (NAFLD) is a major global health concern. The increasing prevalence of NAFLD has been related to type 2 diabetes mellitus (T2D). However, the relationship between short-chain fatty acids (SCFAs) and NAFLD severity is ambiguous in T2D subjects. This study aimed to explore the association of SCFAs with the severity of NAFLD in T2D patients. (2) Methods: We employed echography to examine the severity of hepatic steatosis. The serum levels of nine SCFAs, namely, formate, acetate, propionate, butyrate, isobutyrate, methylbutyrate, valerate, isovalerate, and methylvalerate, were measured using gas chromatography mass spectrometry. (3) Results: A total of 259 T2D patients was enrolled in this cross-sectional study. Of these participants, 117 with moderate to severe NAFLD had lower levels of formate, isobutyrate, and methylbutyrate than the 142 without NAFLD or with mild NAFLD. Lower circulating levels of isobutyrate and methylbutyrate were associated with an increased severity of NAFLD. A relationship between NAFLD severity and circulating isobutyrate and methylbutyrate levels was found independently of a glycated hemoglobin (HbA1C) level of 7.0%. (4) Conclusion: Circulating levels of isobutyrate and methylbutyrate were significantly and negatively correlated with NAFLD severity in the enrolled T2D patients. SCFAs may be related to NAFLD severity in T2D patients.
Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos Voláteis , Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Humanos , Ácidos Graxos Voláteis/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Diabetes Mellitus Tipo 2/sangue , Ultrassonografia , Fígado Gorduroso/diagnóstico por imagem , Isobutiratos/sangue , Estudos Transversais , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou maisRESUMO
Gut dysbiosis can induce chronic inflammation and contribute to atherosclerosis and vascular calcification. The aortic arch calcification (AoAC) score is a simple, noninvasive, and semiquantitative assessment tool to evaluate vascular calcification on chest radiographs. Few studies have discussed the relationship between gut microbiota and AoAC. Therefore, this study aimed to compare the microbiota composition between patients with chronic diseases and high or low AoAC scores. A total of 186 patients (118 males and 68 females) with chronic diseases, including diabetes mellitus (80.6%), hypertension (75.3%), and chronic kidney disease (48.9%), were enrolled. Gut microbiota in fecal samples were analyzed by sequencing of the 16S rRNA gene, and differences in microbial function were examined. The patients were divided into three groups according to AoAC score, including 103 patients in the low AoAC group (AoAC ≤ 3), 40 patients in the medium AoAC group (3 < AoAC ≤ 6), and 43 patients in the high AoAC group (AoAC > 6). Compared to the low AoAC group, the high AoAC group had a significantly lower microbial species diversity (Chao1 index and Shannon index) and increased microbial dysbiosis index. Beta diversity showed that the microbial community composition was significantly different among the three groups (p = 0.041, weighted UniFrac PCoA). A distinct microbial community structure was found in the patients with a low AoAC, with an increased abundance at the genus level of Agathobacter, Eubacterium coprostanoligenes group, Ruminococcaceae UCG-002, Barnesiella, Butyricimonas, Oscillibacter, Ruminococcaceae DTU089, and Oxalobacter. In addition, there was an increased relative abundance of class Bacilli in the high AoAC group. Our findings support the association between gut dysbiosis and the severity of AoAC in patients with chronic diseases.
Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Calcificação Vascular , Masculino , Feminino , Humanos , Microbioma Gastrointestinal/genética , Aorta Torácica , Disbiose/microbiologia , RNA Ribossômico 16S/genéticaRESUMO
Rheumatoid arthritis (RA) and periodontitis are suggested to be closely linked based on microbial dysbiosis, but limited subgingival bacteria have been proven in the pathogenesis of RA. We enrolled 30 RA patients and 25 controls and divided them into three groups with matched age, gender, and diabetes statuses: group AM (all of the matched participants), group PD (periodontally diseased), and group PH (periodontally healthy). Their subgingival microbial composition was determined by V3-V4 16S rRNA gene sequencing. Significant differences in subgingival microbial clustering between the RA patients and controls were observed in groups AM and PD. Among the taxa enriched in RA, Aminipila butyrica and Peptococcus simiae were the only two species displaying positive correlation to the level of anti-citrullinated protein antibodies (ACPAs) in both of the groups. Surprisingly, the median of relative abundances of A. butyrica and P. simiae were 0% in the controls of group PD. Furthermore, a gene encoding arginine deiminase with the capability to produce citrulline was addressed in the complete genome sequence of A. butyrica. This is the first study to elucidate the important roles of A. butyrica and P. simiae as periodontal bacteria leading to RA possibly through the induction of ACPA production.
Assuntos
Artrite Reumatoide , Microbiota , Periodontite , Anticorpos Antiproteína Citrulinada , Autoanticorpos , Bactérias/genética , Humanos , Microbiota/genética , Periodontite/microbiologia , RNA Ribossômico 16S/genéticaRESUMO
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) usually causes skin and soft tissue infections (SSTIs), but occasionally causes invasive infections with a broad range of manifestations. Virulence factors and pathogenesis of CA-MRSA have been investigated in details with genotype ST8/SCCmecIVa (USA300), which first emerged in the United States. However, CA-MRSA evolves rapidly, with different clones dominating in different world regions; their pathogenesis remains unclear. CA-MRSA with genotype ST8/SCCmecIVl (CA-MRSA/J) emerged in 2003 in Japan, spreading widely with a fatal case. We have studied the genetic characteristics of CA-MRSA/J, and during the course of this study, we found that CA-MRSA/J has bacteriophage-like spikes with or without a hexagonal cap (spikes X and Xc). Here, we report that CA-MRSA/J strain NN55 has non-phage-like, one-µm-long/jerky spikes with or without a hexagonal cap (LSX/LSXc), and also that LSX/LSXc forms (staphylococcal) interbacterial aggregate/net structures (SIAN). Regarding the phenomenon of SIAN, NN55 first formed single short spike X, followed by multiple molecules of long and jerky LSX/LSXc, leading to the interbacterial construction of SIAN, in colonies with high cell densities. The LSX/LSXc and SIAN structures have not been reported in S. aureus. NN55 was invasive in a HEp-2 cell assay, exhibiting SIAN. The novel SIAN structures may be foci-skeletons or toxic aggregates in NN55's invasive infections. The phenomenon of SIAN suggests novel staphylococcal cell-surface dynamism, providing a new structure-and-function relationship model and advancing the understanding of CA-MRSA pathogenesis.
Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Infecções Comunitárias Adquiridas/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Infecções dos Tecidos Moles/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Estados UnidosRESUMO
Candida auris, a multidrug resistant pathogenic yeast, has spread worldwide and caused several outbreaks in healthcare settings. Here, we report the first case of C. auris candidemia in Taiwan in a patient with a two-month history of hospitalization in Vietnam. We performed further investigation on the isolate from the present case as well as the previously reported C. auris isolate identified from a wound in 2018 in Taiwan, which was the first case reported in Taiwan. Both C. auris isolates were found to be susceptible to fluconazole, amphotericin B, and echinocandins. Additionally, mutations in ERG11 or FKS1 were not detected in either isolate. Microsatellite genotyping revealed that both isolates belonged to the South Asian clade. In recent years, C. auris has emerged as a global concern, and differences in clades and susceptibility patterns mandate further awareness and systematic surveillance.
Assuntos
Candida auris , Candidíase Invasiva , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida/genética , Candidíase , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Taiwan/epidemiologiaRESUMO
Metabolic syndrome (MS) has been an important health issue in the world, and insulin resistance (IR) is one of the characteristics of MS, increasing the risk for the onset and poor prognosis of type 2 diabetes mellitus (T2D). However, the interactional effect of obesity or abnormal body composition on the correlation between gut microbiota and IR in T2D patients is not well-explored. This cross-sectional study used a body composition monitor to evaluate lean tissue mass and fat tissue mass. IR was calculated using homeostatic model assessment-insulin resistance (HOMA-IR). Eight pairs of 16S rRNA gene primers specific to Firmicutes, Bacteroidetes, Clostridium leptum group, Faecalibacteriumprausnitzii, B acteroides, Bifidobacterium, Akkermansia muciniphila, and Escherichia coli were utilized to measure their abundance by qPCR. One hundred and fifty-four T2D patients were enrolled and stratified by the median HOMA-IR (2.5) and body mass index (BMI) of 25 kg/m2. A lower abundance of A. muciniphila was found in T2D patients with high HOMA-IR and BMI respectively. HOMA-IR and BMI had a synergistic effect on the reduction of the abundance of A. muciniphila. After adjusting metabolic factors, the low abundance of A. muciniphila significantly increased the risk for greater severity of IR. Furthermore, the negative correlation between A. muciniphila and IR was only found in T2D patients with high lean tissue. In conclusion, decreased abundance of fecal A. muciniphila enhanced the severity of IR in Asians with T2D, especially those having lean mass, and this significant relationship was independent of obesity.
RESUMO
A novel coagulase-negative Staphylococcus strain (NTUH-S172T) was isolated from human blood culture in Taiwan with preliminary identification of Staphylococcus saprophyticus. 16S rRNA gene analysis and multilocus sequence analysis (MLSA) showed that NTUH-S172T was most closely related to Staphylococcus haemolyticus. The average nucleotide identity and digital DNA-DNA hybridization values with the whole genome sequence were <95â% and<70â% when compared to the related species. Strain NTUH-S172T could be distinguished from S. haemolyticus by urease production and from Staphylococcus borealis by nitrate reduction. In addition, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) spectrum of NTHU-S172T was significantly different from that of S. haemolyticus, which could be used in clinical identification. In conclusion, it is proposed that this isolate represents a novel species, named Staphylococcus taiwanensis sp. nov., with type strain NTUH-S172T (=BCRC 81315T=JCM 34726T).
Assuntos
Sangue/microbiologia , Ácidos Graxos , Filogenia , Staphylococcus , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Humanos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Staphylococcus/classificação , Staphylococcus/isolamento & purificação , TaiwanRESUMO
OBJECTIVES: This study aimed to provide detailed genetic characterization of Tn6636, a multidrug-resistant and composite mobile element, in clinical isolates of Staphylococcus aureus. METHODS: A total of 112 ermB-positive methicillin-susceptible S. aureus (MSSA) and 224 ermB-positive methicillin-resistant S. aureus (MRSA) isolates collected from 2000 to 2015 were tested for the presence of Tn6636. Detection of the plasmids harboring Tn6636 was performed by S1 nuclease digestion pulsed-field gel electrophoresis (PFGE) analysis, conjugation test, and whole genome sequencing (WGS). RESULTS: Prevalence of Tn6636 in MSSA is higher than that in MRSA. Ten MSSA isolates and 10 MRSA isolates carried Tn6636. The 10 MSSA isolates belonged to three sequence types (ST), including ST7 (n = 6), ST5 (n = 3), and ST59 (n = 1). The 10 MRSA isolates belonged to ST188 (n = 8) and ST965 (n = 2). Analysis of plasmid sequences revealed that Tn6636 was harbored by six different mosaic plasmids. In addition to resistance genes, some plasmids also harbored toxin genes. CONCLUSION: The presence of multi-resistant Tn6636 in plasmids of both MSSA and MRSA with various STs suggests its broad dissemination. Results indicate that Tn6636 has existed for at least 16 years in Taiwan. The mosaic plasmids harboring Tn6636 can be transferred by conjugation. Ongoing surveillance of Tn6636 is essential to avoid continued spreading of resistant plasmids.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureusRESUMO
Owing to the over usage of carbapenems, carbapenem resistance has become a vital threat worldwide, and, thus, the World Health Organization announced the carbapenem-resistant Enterobacteriaceae (CRE) as the critical priority for antibiotic development in 2017. In the current situation, combination therapy would be one solution against CRE. Azidothymidine (AZT), a thymidine analog, has demonstrated its synergistically antibacterial activities with other antibiotics. The unexpected antimicrobial activity of the immunomodulator ammonium trichloro(dioxoethylene-o,o')tellurate (AS101) has been reported against carbapenem-resistant Klebsiella pneumoniae (CRKP). Here, we sought to investigate the synergistic activity between AS101 and AZT against 12 CRKP clinical isolates. According to the gene detection results, the blaOXA-1 (7/12, 58.3%), blaDHA (7/12, 58.3%), and blaKPC (7/12, 58.3%) genes were the most prevalent ESBL, AmpC, and carbapenemase genes, respectively. The checkerboard analysis demonstrated the remarkable synergism between AS101 and AZT, with the observable decrease in the MIC value for two agents and the fractional inhibitory concentration (FIC) index ≤0.5 in all strains. Hence, the combination of AS101 and azidothymidine could be a potential treatment option against CRKP for drug development.
RESUMO
The increasing trend of carbapenem-resistant Acinetobacter baumannii (CRAB) worldwide has become a concern, limiting therapeutic alternatives and increasing morbidity and mortality rates. The immunomodulation agent ammonium trichloro (dioxoethylene-O,O'-) tellurate (AS101) was repurposed as an antimicrobial agent against CRAB. Between 2016 and 2018, 27 CRAB clinical isolates were collected in Taiwan. The in vitro antibacterial activities of AS101 were evaluated using broth microdilution, time-kill assay, reactive oxygen species (ROS) detection and electron microscopy. In vivo effectiveness was assessed using a sepsis mouse infection model. The MIC range of AS101 for 27 CRAB isolates was from 0.5 to 32 µg/mL, which is below its 50% cytotoxicity (approximately 150 µg/mL). Bactericidal activity was confirmed using a time-kill assay. The antibacterial mechanism of AS101 was the accumulation of the ROS and the disruption of the cell membrane, which, in turn, results in cell death. The carbapenemase-producing A. baumannii mouse sepsis model showed that AS101 was a better therapeutic effect than colistin. The mice survival rate after 120 h was 33% (4/12) in the colistin-treated group and 58% (7/12) in the high-dose AS101 (3.33 mg/kg/day) group. Furthermore, high-dose AS101 significantly decreased bacterial population in the liver, kidney and spleen (all p < 0.001). These findings support the concept that AS101 is an ideal candidate for further testing in future studies.
RESUMO
Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease (CVD). The gut microbiota may contribute to the onset and progression of T2D and CVD. The aim of this study was to evaluate the relationship between the gut microbiota and subclinical CVD in T2D patients. This cross-sectional study used echocardiographic data to evaluate the cardiac structure and function in T2D patients. We used a quantitative polymerase chain reaction to measure the abundances of targeted fecal bacterial species that have been associated with T2D, including Bacteroidetes, Firmicutes, Clostridium leptum group, Faecalibacterium prausnitzii, Bacteroides, Bifidobacterium, Akkermansia muciniphila, and Escherichia coli. A total of 155 subjects were enrolled (mean age 62.9 ± 10.1 years; 57.4% male and 42.6% female). Phyla Bacteroidetes and Firmicutes and genera Bacteroides were positively correlated with the left ventricular ejection fraction. Low levels of phylum Firmicutes were associated with an increased risk of left ventricular hypertrophy. High levels of both phylum Bacteroidetes and genera Bacteroides were negatively associated with diastolic dysfunction. A high phylum Firmicutes/Bacteroidetes (F/B) ratio and low level of genera Bacteroides were correlated with an increased left atrial diameter. Phyla Firmicutes and Bacteroidetes, the F/B ratio, and the genera Bacteroides were associated with variations in the cardiac structure and systolic and diastolic dysfunction in T2D patients. These findings suggest that changes in the gut microbiome may be the potential marker of the development of subclinical CVD in T2D patients.