Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Kobe J Med Sci ; 69(2): E40-E48, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37357177

RESUMO

Skeletal muscle is a tissue that contains abundant water. However, by aging a decrease in muscle water content is induced in skeletal muscles, which is one of major age-related alterations in skeletal muscles as common as muscle atrophy. Selective water channel aquaporin 4 (AQP4) is one of major water transport networks in the skeletal muscles. However, the effects of aging on water transport via AQP4 in skeletal muscles remain unclear. Thus, the current study investigated the change of the expression level of AQP4 in the aged skeletal muscles. Eight-week-old (the young group) and 2-year-old (the old group) female Fischer 344 rats were used in this study (n = 6/group). In skeletal muscles of each group, the expression levels of some target proteins were quantified by Western blot analysis. As a result, the relative muscle weight in the old group was significantly decreased, compared with that in the young group (p < 0.05). The decline in the muscle water content was accompanied by the decrease in expression of AQP4 in the aged skeletal muscles (p < 0.05, respectively). Moreover, the expression of transient receptor potential vanilloid 4, which synergistically regulates the osmolality together with AQP4, was significantly reduced in the aged skeletal muscles (p < 0.05). Therefore, the current study suggested that water transport abilities via AQP4 may decrease in the aged skeletal muscles, and thereby may be involved in age-related loss of muscle water content.


Assuntos
Aquaporina 4 , Músculo Esquelético , Animais , Feminino , Ratos , Envelhecimento , Aquaporina 4/metabolismo , Água/metabolismo
2.
Cells ; 12(9)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37174683

RESUMO

Myoblast fusion is essential for skeletal muscle development, growth, and regeneration. However, the molecular mechanisms underlying myoblast fusion and differentiation are not fully understood. Previously, we reported that interleukin-4 (IL-4) promotes myoblast fusion; therefore, we hypothesized that IL-4 signaling might regulate the expression of the molecules involved in myoblast fusion. In this study, we showed that in addition to fusion, IL-4 promoted the differentiation of C2C12 myoblast cells by inducing myoblast determination protein 1 (MyoD) and myogenin, both of which regulate the expression of myomerger and myomaker, the membrane proteins essential for myoblast fusion. Unexpectedly, IL-4 treatment increased the expression of myomerger, but not myomaker, in C2C12 cells. Knockdown of IL-4 receptor alpha (IL-4Rα) in C2C12 cells by small interfering RNA impaired myoblast fusion and differentiation. We also demonstrated a reduction in the expression of MyoD, myogenin, and myomerger by knockdown of IL-4Rα in C2C12 cells, while the expression level of myomaker remained unchanged. Finally, cell mixing assays and the restoration of myomerger expression partially rescued the impaired fusion in the IL-4Rα-knockdown C2C12 cells. Collectively, these results suggest that the IL-4/IL-4Rα axis promotes myoblast fusion and differentiation via the induction of myogenic regulatory factors, MyoD and myogenin, and myomerger.


Assuntos
Interleucina-4 , Fatores de Regulação Miogênica , Diferenciação Celular/genética , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Mioblastos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Miogenina/genética , Miogenina/metabolismo , Animais , Camundongos
3.
J Cachexia Sarcopenia Muscle ; 13(5): 2525-2536, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35818664

RESUMO

BACKGROUND: Oestrogen deficiency reduces skeletal muscle mass and force generation in postmenopausal women. Muscle mass is maintained by satellite cells, which are regulated by oestrogen. Although oestrogen therapy enhances muscle hypertrophy induced by resistance training in postmenopausal women, the molecular mechanism is unclear. METHODS: Adult female rats (10 weeks old) were divided into six groups: sham sedentary (Sham-Sed), sham climbing training (Sham-CT), ovariectomy sedentary (OVX-Sed), ovariectomy climbing training (OVX-CT), ovariectomy plus oestrogen treatment sedentary (OVX+E-Sed), and ovariectomy plus oestrogen treatment climbing training (OVX+E-CT). At 8 weeks after ovariectomy, rats in the training group were trained (one session every 3 days for 8 weeks) to climb a ladder while bearing a load. Oestrogen treatment involved subcutaneous insertion of a 17ß-oestradiol pellet. After 8 weeks, the flexor hallucis longus muscle was collected and analysed. RESULTS: Following climbing training, the flexor hallucis longus muscle mass and muscle-to-body weight ratios were dramatically increased by training (main effect of training, P < 0.01); the OVX+E-CT group showed the highest values (main effect of group, P < 0.01). The cross-sectional area of all muscle fibre types was increased by training (main effect of training, P < 0.01). Particularly, the cross-sectional area of MHC IIa in the OVX+E-CT group was significantly larger than that in the Sham-CT and OVX-CT groups. Satellite cell numbers were increased in all training groups (main effect of training, P < 0.05), and the myonuclear number was increased by training (main effect of training, P < 0.01), but there was no main group effect. The myonuclear domain size of all muscle fibre types and MHC IIa was increased in all training groups (main effect of training, P < 0.01) and showed a main group effect (P < 0.01). The myonuclear domain sizes of all muscle fibre types and MHC IIa in the OVX+E-CT group were significantly larger than those in the Sham-CT and OVX-CT groups. The total RNA contents revealed main effects of training and the group (P < 0.01); the OVX+E-CT group showed the highest contents (main effect of group, P < 0.01). The mRNA and protein levels of rpS6 were increased in the OVX+E-Sed and CT groups (main effects of group, P < 0.05). Particularly, the 28S ribosomal RNA content in OVX+E-Sed group was significantly higher than that in the OVX-Sed group. CONCLUSIONS: Oestrogen enhanced the resistance training-induced increase in myonuclear domain size but did not affect satellite cells and ribosome biogenesis.


Assuntos
Músculo Esquelético , Condicionamento Físico Animal , Treinamento Resistido , Animais , Feminino , Humanos , Ratos , Estradiol/farmacologia , Estrogênios/farmacologia , Músculo Esquelético/fisiologia , Proteína S6 Ribossômica , RNA Mensageiro , RNA Ribossômico 28S
4.
Artigo em Inglês | MEDLINE | ID: mdl-35783523

RESUMO

Loquat (Eriobotrya japonica (Thunb.) Lindl.) leaves are traditionally used to improve muscle weakness, but their effects on muscle protein synthesis require further research. Therefore, we aimed to investigate whether loquat leaf extract (LLE) enhances muscle contraction-induced activation of muscle protein synthesis signaling. Male Wistar rats (12 weeks old, n = 6/group) were categorized into water treatment (CON) and LLE treatment (LLE) groups. The rats were administered distilled water or LLE (1.5 g/kg/day) once a day by oral gavage for 7 days. On day 7, at 3 h post-LLE administration, the gastrocnemius muscle in the right leg of each rat was stimulated by electrical muscle stimulation (EMS) (100 Hz, 30 V) through five sets of 10 isometric contractions (7 s contraction, 3 s rest) with 3 min interset intervals. The rats were then sacrificed, and the gastrocnemius muscles of both legs were excised at 3 h post-EMS. The phosphorylation levels of mammalian target of rapamycin complex 1 (mTORC1) signaling pathway molecules (Akt, mTOR, and p70S6K) were determined by Western blotting. Regarding the muscle contraction-induced protein synthesis signaling pathway, Akt phosphorylation at Ser473 was not significantly different between the CON and LLE groups. mTOR phosphorylation at Ser2448 was increased by EMS but did not show a significant difference between the CON and LLE groups. p70S6K phosphorylation at Thr389 was significantly increased in response to EMS, whereas the LLE group showed significantly higher p70S6K phosphorylation at Thr389 than that in the CON group. This suggests that LLE enhances muscle contraction-induced activation of p70S6K phosphorylation in rat skeletal muscles.

5.
Biomed Res ; 41(3): 139-148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32522931

RESUMO

Radix astragali is a popular traditional herbal medicine that provides significant protection against tissue injury in various models of oxidative stress-related diseases. In this study, we aimed to investigate whether administration of Radix astragali prevented atrophy in both slow- and fast-twitch muscles following cast immobilization. Twenty-seven 12-week-old male F344 rats were divided into three experimental groups: control (CON), immobilized (IM), and immobilized with Radix astragali administration (IM+AR). Rats in the IM and IM+AR groups were subjected to immobilization of both lower extremities using casting-tape for 14 days. Rats in the IM+AR group were orally administered a decoction of Radix astragali daily for 21 days beginning 7 days before cast immobilization. As expected, rats in the IM group showed significant decreases (P < 0.05) in soleus and plantaris muscle-to-body weight ratios by 74.3% and 70.5%, respectively, compared with those in the CON group. Administration of Radix astragali significantly reversed (+35.5%) the weight reduction observed in soleus muscle, but not in the plantaris muscle, compared with that in the IM group. Furthermore, administration of Radix astragali inhibited MuRF1 mRNA expression only in the soleus muscle during cast immobilization. Our results demonstrated that administration of Radix astragali suppressed the immobilization-induced reductions in skeletal muscle mass and expression of MuRF1 mRNA in slow-twitch soleus muscles, but not in fast-twitch plantaris muscles.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Animais , Astragalus propinquus , Expressão Gênica , Membro Posterior , Imobilização/efeitos adversos , Imobilização/métodos , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Tamanho do Órgão/efeitos dos fármacos , Fitoterapia/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Proteínas com Motivo Tripartido/antagonistas & inibidores , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Phytomedicine ; 59: 152785, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31009850

RESUMO

BACKGROUND: Bavachin is a natural product isolated from Psoralea corylifolia L. that has been applied as a traditional medicine in Asian countries. However, the anti-inflammatory effects of bavachin on LPS-induced inflammation and NLRP3 inflammasome activation by macrophages remain unclear. PURPOSE: We investigated the anti-inflammatory effects of bavachin on LPS-activated murine macrophage cell line J774A.1 cells and murine peritoneal macrophages. METHODS: J774A.1 cells and murine peritoneal macrophages were pre-treated with bavachin following LPS treatment. The concentrations of NO, PGE2, IL-6 and IL-12p40 in cell culture supernatant were analyzed. The expressions of iNOS, COX-2, mPGES-1 and MAPKs were analyzed using Western blotting, while NF-κB activity was detected using promoter reporter assay. To examine the activation of NLRP3 inflammasome, J774A.1 cells were incubated with LPS, and then treated with bavachin following treatment with ATP. The concentration of IL-1ß in the cell culture supernatant was measured. The expressions of NLRP3, ASC, caspase-1 and IL-1ß were analyzed using Western blotting. The formation of inflammasome complex was observed by immunofluorescence microscopy. RESULTS: Bavachin suppressed LPS-induced NO and PGE2 production, and decreased iNOS and mPGES-1 expression. Bavachin also reduced LPS-induced IL-6 and IL-12p40 production and decreased the activation of MAPKs and NF-κB. Additionally, bavachin suppressed NLRP3 inflammasome-derived IL-1ß secretion, decreased caspase-1 activation, repressed mature IL-1ß expression, and inhibited inflammasome complex formation. Furthermore, bavachin also suppressed the production of NO, IL-6 and IL-12p40 by LPS-stimulated murine peritoneal macrophages. CONCLUSION: Our experimental results indicated anti-inflammatory effects of bavachin exhibit attenuation of LPS-induced inflammation and inhibit activation of NLRP3 inflammasome in macrophages. These results suggest that bavachin might have potential in treating inflammatory and autoimmune diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Flavonoides/farmacologia , Inflamassomos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Prostaglandina-E Sintases/metabolismo
7.
Molecules ; 24(6)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909606

RESUMO

We describe herein the preparation of certain 2-substituted 3-arylquinoline derivatives and the evaluation of their anti-inflammatory effects in LPS-activated murine J774A.1 macrophage cells. Among these newly synthesized 2-substituted 3-arylquinoline derivatives, 2-(4-methoxy- benzoyl)-3-(3,4,5-trimethoxyphenyl)quinoline (18a) and 2-(4-fluorobenzoyl)-3-(3,4,5-trimethoxy- phenyl)quinoline (18b) are two of the most active compounds which can inhibit the production of NO at non-cytotoxic concentrations. Our results have also indicated that compounds 18a and 18b significantly decrease the secretion of pro-inflammatory cytokines (TNF-á and IL-6), inhibit the expression of iNOS, suppress the phosphorylation of MAPKs, and attenuate the activity of NF-êB by LPS-activated macrophages. Through molecular docking analysis, we found that 18b could fit into the middle of the TNF-á dimer and form hydrophobic interactions with Leu55, Leu57 chain A and B, Tyr59, Val123 chain B and D, Ile 155. These results suggest that both 18a and 18b are potential lead compounds in inhibiting LPS-induced inflammatory responses. Further structural optimization to discover novel anti-inflammatory agents is ongoing.


Assuntos
Anti-Inflamatórios/química , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Quinolinas/química , Aminoácidos/química , Animais , Anti-Inflamatórios/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/genética , Macrófagos/patologia , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética
8.
BMC Complement Altern Med ; 18(1): 221, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30107806

RESUMO

BACKGROUND: Inflammation has been found to be associated with many neurodegenerative diseases, including Parkinson's and dementia. Attenuation of microglia-induced inflammation is a strategy that impedes the progression of neurodegenerative diseases. METHODS: We used lipopolysaccharide (LPS) to simulate murine microglia cells (BV2 cells) as an experimental model to mimic the inflammatory environment in the brain. In addition, we examined the anti-inflammatory ability of corylin, a main compound isolated from Psoralea corylifolia L. that is commonly used in Chinese herbal medicine. The production of nitric oxide (NO) by LPS-activated BV2 cells was measured using Griess reaction. The secretion of proinflammatory cytokines including tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) by LPS-activated BV2 cells was analyzed using enzyme-linked immunosorbent assay (ELISA). The expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, IL-1ß and mitogen-activated protein kinases (MAPKs) in LPS-activated BV2 cells was examined by Western blot. RESULTS: Our experimental results demonstrated that corylin suppressed the production of NO and proinflammatory cytokines by LPS-activated BV2 cells. In addition, corylin inhibited the expression of iNOS and COX-2, attenuated the phosphorylation of ERK, JNK and p38, decreased the expression of NLRP3 and ASC, and repressed the activation of caspase-1 and IL-1ß by LPS-activated BV2 cells. CONCLUSION: Our results indicate the anti-inflammatory effects of corylin acted through attenuating LPS-induced inflammation and inhibiting the activation of NLRP3 inflammasome in LPS-activated BV2 cells. These results suggest that corylin might have potential in treating brain inflammation and attenuating the progression of neurodegeneration diseases.


Assuntos
Flavonoides/farmacologia , Inflamassomos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Sci Rep ; 8(1): 2672, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422643

RESUMO

Shikonin is a naphthoquinone isolated from the dried root of Lithospermum erythrorhizon, an herb used in Chinese medicine. Although several studies have indicated that shikonin exhibits antitumor activity in breast cancer, the mechanism of action remains unclear. In the present study, we performed transcriptome analysis using RNA-seq and explored the mechanism of action of shikonin in regulating the growth of different types of breast cancer cells. The IC50 of shikonin on MCF-7, SKBR-3 and MDA-MB-231 cells were 10.3 µΜ, 15.0 µΜ, 15.0 µΜ respectively. Our results also demonstrated that shikonin arrests the progression of cell cycle and induces apoptosis in MDA-MB-231 cells. Using RNA-seq transcriptome analysis, we found 38 common genes that significantly express in different types of breast cancer cells under shikonin treatment. In particular, our results indicated that shikonin induces the expression of dual specificity phosphatase (DUSP)-1 and DUSP2 in both RNA and protein levels. In addition, shikonin also inhibits the phosphorylation of JNK and p38, the downstream signaling molecules of DUSP1 and DUSP2. Therefore, our results suggest that shikonin induces the expression of DUSP1 and DUSP2 which consequently switches off JNK and p38 MAPK pathways and causes cell cycle arrest and apoptosis in breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Naftoquinonas/farmacologia , Transcriptoma/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 2 de Especificidade Dupla/metabolismo , Perfilação da Expressão Gênica , Humanos , Lithospermum/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Naftoquinonas/metabolismo , RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
10.
Am J Chin Med ; 45(4): 847-861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28490235

RESUMO

Aloe, a polyphenolic anthranoid-containing Aloe vera leaves, is a Chinese medicine and a popular dietary supplement worldwide. In in vivo situations, polyphenolic anthranoids are extensively broken down into glucuronides and sulfate metabolites by the gut and the liver. The anti-inflammatory potential of aloe metabolites has not been examined. The aim of this study was to investigate the anti-inflammatory effects of aloe metabolites from in vitro (lipopolysaccharides (LPS)-activated RAW264.7 macrophages) and ex vivo (LPS-activated peritoneal macrophages) to in vivo (LPS-induced septic mice). The production of proinflammatory cytokines (TNF-[Formula: see text] and IL-12) and NO was determined by ELISA and Griess reagents, respectively. The expression levels of iNOS and MAPKs were analyzed by Western blot. Our results showed that aloe metabolites inhibited the expression of iNOS, decreased the production of TNF-[Formula: see text], IL-12, and NO, and suppressed the phosphorylation of MAPKs by LPS-activated RAW264.7 macrophages. In addition, aloe metabolites reduced the production of NO, TNF-[Formula: see text] and IL-12 by murine peritoneal macrophages. Furthermore, aloe administration significantly reduced the NO level and exhibited protective effects against sepsis-related death in LPS-induced septic mice. These results suggest that aloe metabolites exerted anti-inflammatory effects in vivo, and that these effects were associated with the inhibition of inflammatory mediators. Therefore, aloe could be considered an effective therapeutic agent for the treatment of sepsis.


Assuntos
Aloe/química , Antraquinonas/farmacologia , Citocinas/metabolismo , Glucuronídeos/farmacologia , Mediadores da Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Terapia de Alvo Molecular , Fitoterapia , Polifenóis/farmacologia , Sepse/prevenção & controle , Animais , Antraquinonas/isolamento & purificação , Antraquinonas/metabolismo , Glucuronídeos/isolamento & purificação , Glucuronídeos/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Folhas de Planta/química , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Células RAW 264.7 , Ratos , Sepse/etiologia
11.
Sci Rep ; 7: 46299, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28397806

RESUMO

Corylin is a main compound isolated from Psoralea corylifolia L. (Fabaceae). A variety of pharmacological effects such as antioxidant, anti-proliferation, and anti-inflammatory properties of corylin have been reported. Nevertheless, the effect of corylin in microbial infection and sepsis remains unclear. In the present study, we investigated the anti-inflammatory effects of corylin. Our experimental results demonstrated that corylin inhibited the production of TNF-α, IL-6 and NO by both LPS-activated RAW 264.7 cells and LPS-activated murine peritoneal macrophages. Moreover, corylin suppressed the expression levels of iNOS and COX-2, reduced the production of PGE2 and HMGB1, blocked the translocation of HMGB1 from the nucleus to cytosol, and decreased the phosphorylation of MAPKs in LPS-activated RAW 264.7 cells as well as suppressed the activity of NF-κB in LPS-activated J-Blue cells. In addition, the administration of corylin reduced the production of NO and TNF-α, decreased LPS-induced liver damage markers (AST and ALT) and kidney damage markers (BUN and CRE), attenuated infiltration of inflammatory cells and tissue damage of lung, liver and kidney, and enhanced the survival rate of LPS-challenged mice. Taken together, these results show the anti-inflammatory properties of corylin on LPS-induced inflammation and sepsis. Corylin could potentially be a novel anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Lipopolissacarídeos/efeitos adversos , Sepse/etiologia , Sepse/metabolismo , Animais , Biomarcadores , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Mediadores da Inflamação/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Células RAW 264.7 , Sepse/tratamento farmacológico , Sepse/mortalidade , Transdução de Sinais/efeitos dos fármacos
12.
Am J Physiol Cell Physiol ; 308(9): C685-96, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673773

RESUMO

Effectively directing the chondrogenesis of adipose-derived stem cells (ADSCs) to engineer articular cartilage represents an important challenge in ADSC-based articular cartilage tissue engineering. The discoidin domain receptor 1 (DDR1) has been shown to affect cartilage homeostasis; however, little is known about the roles of DDR1 in ADSC chondrogenesis. In this study, we used the three-dimensional culture pellet culture model system with chondrogenic induction to investigate the roles of DDR1 in the chondrogenic differentiation of human ADSCs (hADSCs). Real-time polymerase chain reaction and Western blot were used to detect the expression of DDRs and chondrogenic genes. Sulfated glycosaminoglycan (sGAG) was detected by Alcian blue and dimethylmethylene blue (DMMB) assays. Terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to assess cell death. During the chondrogenesis of hADSCs, the expression of DDR1 but not DDR2 was significantly elevated. The depletion of DDR1 expression in hADSCs using short hairpin RNA increased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and cartilaginous matrix deposition (collagen type II and sGAG) and only slightly increased cell death (2-8%). DDR1 overexpression in hADSCs decreased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and sGAG and enhanced hADSC survival. Moreover, DDR1-depleted hADSCs showed decreased expression of the terminal differentiation genes runt-related transcription factor 2 (Runx2) and matrix metalloproteinase 13 (MMP-13). These results suggest that DDR1 suppression may enhance ADSC chondrogenesis by enhancing the expression of chondrogenic genes and cartilaginous matrix deposition. We proposed that the suppression of DDR1 in ADSCs may be a candidate strategy of genetic modification to optimize ADSC-based articular cartilage tissue engineering.


Assuntos
Condrócitos/metabolismo , Condrogênese , Receptores Proteína Tirosina Quinases/metabolismo , Células-Tronco/metabolismo , Gordura Subcutânea/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Receptor com Domínio Discoidina 1 , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Humanos , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Fenótipo , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Gordura Subcutânea/citologia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA