Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39229155

RESUMO

Keratinocytes, the dominant cell type in the melanoma microenvironment during tumor initiation, exhibit diverse effects on melanoma progression. Using a zebrafish model of melanoma and human cell co-cultures, we observed that keratinocytes undergo an Epithelial-Mesenchymal Transition (EMT)-like transformation in the presence of melanoma, reminiscent of their behavior during wound healing. Surprisingly, overexpression of the EMT transcription factor Twist in keratinocytes led to improved overall survival in zebrafish melanoma models, despite no change in tumor initiation rates. This survival benefit was attributed to reduced melanoma invasion, as confirmed by human cell co-culture assays. Single-cell RNA-sequencing revealed a unique melanoma cell cluster in the Twist-overexpressing condition, exhibiting a more differentiated, less invasive phenotype. Further analysis nominated homotypic jam3b-jam3b and pgrn-sort1a interactions between Twist-overexpressing keratinocytes and melanoma cells as potential mediators of the invasive restraint. Our findings suggest that EMT in the tumor microenvironment (TME) may limit melanoma invasion through altered cell-cell interactions.

2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38562693

RESUMO

The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. Validating the function of these candidates in vivo is challenging, due to low efficiency and low throughput of most model systems. We have developed a rapid, scalable system for assessing the role of candidate genes using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked-in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. We used this system to identify both cell-autonomous and non-cell autonomous regulators of normal melanocyte development. We then applied this to the melanoma setting to demonstrate that loss of genes required for melanocyte survival can paradoxically promote more aggressive phenotypes, highlighting that in vitro screens can mask in vivo phenotypes. Our high-efficiency genetic approach offers a versatile tool for exploring developmental processes and disease mechanisms that can readily be applied to other cell lineages.

3.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586016

RESUMO

Lipid droplets are fat storage organelles composed of a protein envelope and lipid rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.

4.
Cell Syst ; 14(7): 605-619.e7, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37473731

RESUMO

Spatial variation in cellular phenotypes underlies heterogeneity in immune recognition and response to therapy in cancer and many other diseases. Spatial transcriptomics holds the potential to quantify such variation, but existing analysis methods are limited by their focus on individual tasks such as spot deconvolution. We present BayesTME, an end-to-end Bayesian method for analyzing spatial transcriptomics data. BayesTME unifies several previously distinct analysis goals under a single, holistic generative model. This unified approach enables BayesTME to deconvolve spots into cell phenotypes without any need for paired single-cell RNA-seq. BayesTME then goes beyond spot deconvolution to uncover spatial expression patterns among coordinated subsets of genes within phenotypes, which we term spatial transcriptional programs. BayesTME achieves state-of-the-art performance across myriad benchmarks. On human and zebrafish melanoma tissues, BayesTME identifies spatial transcriptional programs that capture fundamental biological phenomena such as bilateral symmetry and tumor-associated fibroblast and macrophage reprogramming. BayesTME is open source.


Assuntos
Benchmarking , Peixe-Zebra , Humanos , Animais , Teorema de Bayes , Peixe-Zebra/genética , Perfilação da Expressão Gênica , Macrófagos
5.
Cancer Discov ; 13(1): 194-215, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36259947

RESUMO

In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE: We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Melanoma , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Recidiva Local de Neoplasia/genética , Melanoma/patologia , Perfilação da Expressão Gênica , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica
6.
Nature ; 604(7905): 354-361, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355015

RESUMO

Oncogenic alterations to DNA are not transforming in all cellular contexts1,2. This may be due to pre-existing transcriptional programmes in the cell of origin. Here we define anatomic position as a major determinant of why cells respond to specific oncogenes. Cutaneous melanoma arises throughout the body, whereas the acral subtype arises on the palms of the hands, soles of the feet or under the nails3. We sequenced the DNA of cutaneous and acral melanomas from a large cohort of human patients and found a specific enrichment for BRAF mutations in cutaneous melanoma and enrichment for CRKL amplifications in acral melanoma. We modelled these changes in transgenic zebrafish models and found that CRKL-driven tumours formed predominantly in the fins of the fish. The fins are the evolutionary precursors to tetrapod limbs, indicating that melanocytes in these acral locations may be uniquely susceptible to CRKL. RNA profiling of these fin and limb melanocytes, when compared with body melanocytes, revealed a positional identity gene programme typified by posterior HOX13 genes. This positional gene programme synergized with CRKL to amplify insulin-like growth factor (IGF) signalling and drive tumours at acral sites. Abrogation of this CRKL-driven programme eliminated the anatomic specificity of acral melanoma. These data suggest that the anatomic position of the cell of origin endows it with a unique transcriptional state that makes it susceptible to only certain oncogenic insults.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Animais Geneticamente Modificados , Carcinogênese/genética , , Mãos , Humanos , Melanoma/patologia , Unhas , Oncogenes/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcrição Gênica , Peixe-Zebra/genética , Melanoma Maligno Cutâneo
7.
Nat Commun ; 12(1): 6278, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725363

RESUMO

During tumor progression, cancer cells come into contact with various non-tumor cell types, but it is unclear how tumors adapt to these new environments. Here, we integrate spatially resolved transcriptomics, single-cell RNA-seq, and single-nucleus RNA-seq to characterize tumor-microenvironment interactions at the tumor boundary. Using a zebrafish model of melanoma, we identify a distinct "interface" cell state where the tumor contacts neighboring tissues. This interface is composed of specialized tumor and microenvironment cells that upregulate a common set of cilia genes, and cilia proteins are enriched only where the tumor contacts the microenvironment. Cilia gene expression is regulated by ETS-family transcription factors, which normally act to suppress cilia genes outside of the interface. A cilia-enriched interface is conserved in human patient samples, suggesting it is a conserved feature of human melanoma. Our results demonstrate the power of spatially resolved transcriptomics in uncovering mechanisms that allow tumors to adapt to new environments.


Assuntos
Neoplasias/genética , Transcriptoma , Microambiente Tumoral , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , RNA-Seq , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Dev Cell ; 56(20): 2808-2825.e10, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34529939

RESUMO

Melanomas can have multiple coexisting cell states, including proliferative (PRO) versus invasive (INV) subpopulations that represent a "go or grow" trade-off; however, how these populations interact is poorly understood. Using a combination of zebrafish modeling and analysis of patient samples, we show that INV and PRO cells form spatially structured heterotypic clusters and cooperate in the seeding of metastasis, maintaining cell state heterogeneity. INV cells adhere tightly to each other and form clusters with a rim of PRO cells. Intravital imaging demonstrated cooperation in which INV cells facilitate dissemination of less metastatic PRO cells. We identified the TFAP2 neural crest transcription factor as a master regulator of clustering and PRO/INV states. Isolation of clusters from patients with metastatic melanoma revealed a subset with heterotypic PRO-INV clusters. Our data suggest a framework for the co-existence of these two divergent cell populations, in which heterotypic clusters promote metastasis via cell-cell cooperation.


Assuntos
Análise por Conglomerados , Melanoma/metabolismo , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Animais , Regulação Neoplásica da Expressão Gênica/fisiologia , Melanoma/patologia , Crista Neural/patologia , Peixe-Zebra
9.
Science ; 373(6559): eabc1048, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516843

RESUMO

Oncogenes only transform cells under certain cellular contexts, a phenomenon called oncogenic competence. Using a combination of a human pluripotent stem cell­derived cancer model along with zebrafish transgenesis, we demonstrate that the transforming ability of BRAFV600E along with additional mutations depends on the intrinsic transcriptional program present in the cell of origin. In both systems, melanocytes are less responsive to mutations, whereas both neural crest and melanoblast populations are readily transformed. Profiling reveals that progenitors have higher expression of chromatin-modifying enzymes such as ATAD2, a melanoma competence factor that forms a complex with SOX10 and allows for expression of downstream oncogenic and neural crest programs. These data suggest that oncogenic competence is mediated by regulation of developmental chromatin factors, which then allow for proper response to those oncogenes.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Cromatina/metabolismo , Melanoma/genética , Melanoma/patologia , Crista Neural/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Animais Geneticamente Modificados , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos , Neoplasias Experimentais , Células-Tronco Neoplásicas/patologia , Crista Neural/metabolismo , Células-Tronco Pluripotentes/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transcrição Gênica , Peixe-Zebra
10.
Cell Syst ; 11(5): 536-546.e7, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32910905

RESUMO

Transcriptional profiling of tumors has revealed a stress-like state among the cancer cells with the concerted expression of genes such as fos, jun, and heat-shock proteins, though this has been controversial given possible dissociation-effects associated with single-cell RNA sequencing. Here, we validate the existence of this state using a combination of zebrafish melanoma modeling, spatial transcriptomics, and human samples. We found that the stress-like subpopulation of cancer cells is present from the early stages of tumorigenesis. Comparing with previously reported single-cell RNA sequencing datasets from diverse cancer types, including triple-negative breast cancer, oligodendroglioma, and pancreatic adenocarcinoma, indicated the conservation of this state during tumorigenesis. We also provide evidence that this state has higher tumor-seeding capabilities and that its induction leads to increased growth under both MEK and BRAF inhibitors. Collectively, our study supports the stress-like cells as a cancer cell state expressing a coherent set of genes and exhibiting drug-resistance properties.


Assuntos
Carcinogênese/patologia , Melanoma/genética , Estresse Fisiológico/genética , Adenocarcinoma/genética , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanoma/metabolismo , Melanoma/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Peixe-Zebra
11.
Dev Cell ; 47(3): 377-387.e4, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30399336

RESUMO

Embryos have a striking ability to heal wounds rapidly and without scarring. Embryonic wound repair is a conserved process, driven by polarization of cell-cell junctions and the actomyosin cytoskeleton in the cells around the wound. However, the upstream signals that trigger cell polarization around wounds are unknown. We used quantitative in vivo microscopy in Drosophila and zebrafish embryos to identify reactive oxygen species (ROS) as a critical signal that orchestrates cell polarity around wounds. ROS promote trafficking of adherens junctions and accumulation of actin and myosin at the wound edge and are necessary for wound closure. We show that, in Drosophila, ROS drive wound healing in part through an ortholog of Src kinase, Src42A, which we identify as a redox sensor that promotes polarization of junctions and the cytoskeleton around wounds. We propose that ROS are a reparative signal that drives rapid embryonic wound healing in vertebrate and invertebrate species.


Assuntos
Polaridade Celular/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/fisiologia , Actinas/metabolismo , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Junções Intercelulares/metabolismo , Miosinas/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
12.
Curr Opin Cell Biol ; 48: 54-62, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28622576

RESUMO

Collective cell movements drive embryonic development and tissue repair, and can cause disease. However, the mechanisms that coordinate the migration of groups of cells in vivo are unclear. Cells generate, transmit and sense mechanical forces to align their movements. Therefore, the machinery used by cells to generate force (cytoskeleton) and to transmit and sense mechanical signals (cell-cell adhesion) is critical for collective movement. Here, we review the components and organization of the cytoskeletal and cell-cell adhesive machineries, and how they are organized to promote collective cell movements in living animals. We discuss the signals that orchestrate molecular rearrangements necessary for coordinated cell motility, and we provide specific examples of movements both in the plane of the tissue (wound healing) and perpendicular to that plane (apical constriction).


Assuntos
Movimento Celular , Citoesqueleto/metabolismo , Actomiosina/metabolismo , Animais , Adesão Celular , Humanos , Microtúbulos/metabolismo , Morfogênese , Cicatrização
13.
Development ; 144(7): 1350-1361, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213553

RESUMO

Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo.


Assuntos
Padronização Corporal , Divisão Celular , Rastreamento de Células/métodos , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Animais , Automação , Fenômenos Biomecânicos , Contagem de Células , Forma Celular , Ectoderma/citologia , Mesoderma/citologia
14.
J Cell Biol ; 210(5): 801-16, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26304727

RESUMO

Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Actomiosina/metabolismo , Caderinas/metabolismo , Endocitose/fisiologia , Cicatrização/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Citoesqueleto de Actina/metabolismo , Animais , Caderinas/biossíntese , Sinalização do Cálcio/fisiologia , Movimento Celular/fisiologia , Clatrina/metabolismo , Drosophila melanogaster/embriologia , Dinaminas/metabolismo , Epitélio/metabolismo , Proteínas de Fluorescência Verde/genética , Microscopia de Vídeo , Imagem com Lapso de Tempo
15.
Curr Biol ; 23(18): R845-8, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24070446

RESUMO

The bending and internalization of tissues during embryonic development is a conserved process driven by dramatic cell-shape changes. A recent study details the molecules required for mesoderm internalization in Drosophila and their unique spatial localization pattern.


Assuntos
Actinas/metabolismo , Polaridade Celular/fisiologia , Drosophila/citologia , Drosophila/embriologia , Junções Intercelulares , Miosinas/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA