Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 1): 130315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382782

RESUMO

Dendrobium officinale (Tie-Pi-Shi-Hu) is a precious traditional Chinese medicine (TCM). The principal active components are polysaccharides (DOP), which have a high potency in therapeutic applications. However, limitations in structure analysis and underlying mechanism investigation impede its further research. This review systemically and critically summarises current understanding in both areas, and points out the influence of starch impurities and the role of gut microbiota in DOP research. As challenges faced in studying natural polysaccharide investigations are common, this review contributes to a broader understanding of polysaccharides beyond DOP.


Assuntos
Dendrobium , Microbioma Gastrointestinal , Dendrobium/química , Extratos Vegetais/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Amido
2.
Food Chem ; 409: 135334, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36586266

RESUMO

Edible bird's nest (EBN) is a popular and expensive food material. The limited supply and great demand result in the use of adulterants. The authenticity concern is raised due to the lack of appropriate quality markers. Herein, this study aims to provide a specific oligosaccharide marker for rapid EBN authentication. Comparing the benzocaine (ABEE)-labeled saccharide profiles of multiple batches of EBN and adulterants indicates seven unique EBN oligosaccharides. The most abundant one, named BNM001, was selected as a marker and characterized to be Neu5Ac (2-3) Gal by MS and NMR spectra. This new oligosaccharide marker enables a rapid authentication of EBN within 10 min. ABEE labelling of this marker further upgraded the accuracy and sensitivity of the LC-qTOF-MS quantitative analysis. The relative marker content was associated with the quality of EBN products. These results suggest a specific and efficient quality marker for rapid authentication of EBN and related products.


Assuntos
Aves , Oligossacarídeos , Animais , Carboidratos , Alimentos , Espectrometria de Massas
3.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889516

RESUMO

Donkey-hide gelatin, also called Ejiao (colla corii asini), is commonly used as a food health supplement and valuable Chinese medicine. Its growing popular demand and short supply make it a target for fraud, and many other animal gelatins can be found as adulterants. Authentication remains a quality concern. Peptide markers were developed by searching the protein database. However, donkeys and horses share the same database, and there is no specific marker for donkeys. Here, solutions are sought following a database-independent strategy. The peptide profiles of authentic samples of different animal gelatins were compared using LC-QTOF-MS/MS. Fourteen specific markers, including four donkey-specific, one horse-specific, three cattle-specific, and six pig-specific peptides, were successfully found. As these donkey-specific peptides are not included in the current proteomics database, their sequences were determined by de novo sequencing. A quantitative LC-QQQ multiple reaction monitoring (MRM) method was further developed to achieve highly sensitive and selective analysis. The specificity and applicability of these markers were confirmed by testing multiple authentic samples and 110 batches of commercial Ejiao products, 57 of which were found to be unqualified. These results suggest that these markers are specific and accurate for authentication purposes.


Assuntos
Gelatina , Espectrometria de Massas em Tandem , Animais , Biomarcadores/análise , Bovinos , Equidae , Gelatina/análise , Cavalos , Peptídeos/análise , Suínos , Espectrometria de Massas em Tandem/métodos
4.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566296

RESUMO

Edible bird's nest (EBN) is an expensive health food. There are many adulterants in the market. It remains challenging to discriminate EBN from its adulterants due to a lack of high-specificity markers. Besides, the current markers are confined to soluble fraction of EBN. Here, both soluble and insoluble fractions were analyzed by LC-QTOF-MS/MS. A total of 26 high-specificity peptides that were specific to EBN were selected as qualitative authentication markers. Among them, 10 markers can discriminate EBN from common adulterants, 13 markers discriminate white EBN from grass EBN/common adulterants, and 3 markers discriminate grass EBN from white EBN/common adulterants. Three of them, which showed high signal abundance (Peak area ≥ 106) and satisfactory linearity (R2 ≥ 0.995) with EBN references, were selected as the assay marker; and their peptide sequences were confidently identified by searching database/de novo sequencing. Based on these markers, a qualitative and quantitative analytical method was successfully developed and well-validated in terms of linearity, precision, repeatability, and accuracy. The method was subsequently applied to detect EBN products on the market. The results indicated that more than half of EBN products were not consistent with what the merchants claimed.


Assuntos
Aves , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Peptídeos , Espectrometria de Massas em Tandem/métodos
6.
Phytomedicine ; 61: 152843, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31039533

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) ranks third among the most common causes of cancer-related deaths worldwide. The chemotherapy for HCC is still insufficient, so far. In searching for effective anti-HCC agents from traditional Chinese medicine, we discovered that aloperine (ALO), a quinolizidine alkaloid from Sophora alopecuroides L., exerts anti-HCC activities. However, the effects of ALO on HCC have been rarely studied, and its underlying mechanisms remain unknown. PURPOSE: This study aims to evaluate the anti-HCC activities of ALO and explore its underlying mechanisms. METHODS: MTT assay and colony formation assay were used to investigate the anti-proliferative effects of ALO on human HCC Hep3B and Huh7 cells. Hoechst 33258 staining was used to observe the morphological changes of cells after ALO treatment. Flow cytometry was used to analyze apoptosis induction, the collapse of the mitochondrial membrane potential and cell cycle distribution. Western blotting was used to examine the expression levels of proteins associated with apoptosis and cell cycle arrest, and key proteins in the PI3K/Akt signaling pathway. Small interfering RNA (siRNA) transfection was used to investigate the role of Akt in ALO-induced apoptosis and cell cycle arrest. Zebrafish tumor model was used to evaluate the anti-HCC effects of ALO in vivo. RESULTS: ALO inhibited the proliferation of Hep3B and Huh7 cells. ALO induced apoptosis in HCC cells, which was accompanied by the loss of mitochondrial potential, the release of cytochrome c into cytosol, as well as the increased cleavages of caspase-9, caspase-3 and PARP. Moreover, ALO induced G2/M cell cycle arrest by downregulating the expression levels of cdc25C, cdc2 and cyclin B1. In addition, ALO inhibited activation of the PI3K/Akt signaling pathway by decreasing the expression levels of p110α, p85, Akt and p-Akt (Ser473). Further study showed that inhibition of Akt by siRNA augmented ALO-mediated apoptosis and G2/M cell cycle arrest in HCC cells. Critically, ALO inhibited the growth of Huh7 cells in vivo. CONCLUSION: We first demonstrated that ALO induced apoptosis and G2/M cell cycle arrest in HCC cells through inhibition of the PI3K/Akt signaling pathway. This study provides a rationale for ALO as a potential chemotherapeutic agent for HCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piperidinas/farmacologia , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Embrião não Mamífero , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizidinas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA