Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Genet ; 5: 72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782886

RESUMO

When parasitic plants and aphid herbivores share a host, both direct and indirect ecological effects (IEEs) can influence evolutionary processes. We used a hemiparasitic plant (Rhinanthus minor), a grass host (Hordeum vulgare) and a cereal aphid (Sitobion avenae) to investigate the genetics of IEEs between the aphid and the parasitic plant, and looked to see how these might affect or be influenced by the genetic diversity of the host plants. Survival of R. minor depended on the parasite's population of origin, the genotypes of the aphids sharing the host and the genetic diversity in the host plant community. Hence the indirect effects of the aphids on the parasitic plants depended on the genetic environment of the system. Here, we show that genetic variation can be important in determining the outcome of IEEs. Therefore, IEEs have the potential to influence evolutionary processes and the continuity of species interactions over time.

2.
Ecol Evol ; 4(2): 121-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24558568

RESUMO

Genetic variation in plants can influence the community structure of associated species, through both direct and indirect interactions. Herbivorous insects are known to feed on a restricted range of plants, and herbivore preference and performance can vary among host plants within a species due to genetically based traits of the plant (e.g., defensive compounds). In a natural system, we expect to find genetic variation within both plant and herbivore communities and we expect this variation to influence species interactions. Using a three-species plant-aphid model system, we investigated the effect of genetic diversity on genetic interactions among the community members. Our system involved a host plant (Hordeum vulgare) that was shared by an aphid (Sitobion avenae) and a hemi-parasitic plant (Rhinanthus minor). We showed that aphids cluster more tightly in a genetically diverse host-plant community than in a genetic monoculture, with host-plant genetic diversity explaining up to 24% of the variation in aphid distribution. This is driven by differing preferences of the aphids to the different plant genotypes and their resulting performance on these plants. Within the two host-plant diversity levels, aphid spatial distribution was influenced by an interaction among the aphid's own genotype, the genotype of a competing aphid, the origin of the parasitic plant population, and the host-plant genotype. Thus, the overall outcome involves both direct (i.e., host plant to aphid) and indirect (i.e., parasitic plant to aphid) interactions across all these species. These results show that a complex genetic environment influences the distribution of herbivores among host plants. Thus, in genetically diverse systems, interspecific genetic interactions between the host plant and herbivore can influence the population dynamics of the system and could also structure local communities. We suggest that direct and indirect genotypic interactions among species can influence community structure and processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA