Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroscience ; 241: 157-69, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23531437

RESUMO

Elevated nerve growth factor (NGF) is believed to play a role in many types of pain. An NGF-blocking antibody (muMab 911) has been shown to reduce pain and hyperalgesia in pain models, suggesting a novel therapeutic approach for pain management. Since NGF also plays important roles in peripheral nervous system development and sensory nerve outgrowth, we asked whether anti-NGF antibodies would adversely impact peripheral nerve regeneration. Adult rats underwent a unilateral sciatic nerve crush to transect axons and were subcutaneously dosed weekly for 8weeks with muMab 911 or vehicle beginning 1day prior to injury. Plasma levels of muMab 911 were assessed from blood samples and foot print analysis was used to assess functional recovery. At 8-weeks post-nerve injury, sciatic nerves were prepared for light and electron microscopy. In a separate group, Fluro-Gold was injected subcutaneously at the ankle prior to perfusion, and counts and sizes of retrogradely labeled and unlabeled dorsal root ganglion neurons were obtained. There was no difference in the time course of gait recovery in antibody-treated and vehicle-treated animals. The number of myelinated and nonmyelinated axons was the same in the muMab 911-treated crushed nerves and intact nerves, consistent with observed complete recovery. Treatment with muMab 911 did however result in a small decrease in average cell body size on both the intact and injured sides. These results indicate that muMab 911 did not impair functional recovery or nerve regeneration after nerve injury in adult rats.


Assuntos
Anticorpos Monoclonais/farmacologia , Fator de Crescimento Neural/antagonistas & inibidores , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/fisiologia , Envelhecimento , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões
2.
Pharm Res ; 17(2): 216-21, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10751038

RESUMO

PURPOSE: The purpose of this study was to evaluate the in vitro inhibitory potency of various amide analogues and derivatives of valproic acid toward human microsomal epoxide hydrolase (mEH). METHODS: mEH inhibition was evaluated in human liver microsomes with 25 microM (S)-(+)-styrene oxide as the substrate. Inhibitory potency expressed as the median inhibitory concentration (IC50) was calculated from the formation rate of the enzymatic product, (S)-(+)-1-phenyl-1,2-ethanediol. RESULTS: Inhibitory potency was directly correlated with lipophilicity and became significant for amides with a minimum of eight carbon atoms. Branched eight-carbon amides were more potent inhibitors than their straight chain isomer, octanamide. N-substituted valproylamide analogues had reduced or abolished inhibition potency with the exception of valproyl hydroxamic acid being a potent inhibitor. Inhibition potency was not stereoselective in two cases of chiral valpromide isomers. Valproyl glycinamide, a new antiepileptic drug currently undergoing phase II clinical trials and its major metabolite valproyl glycine were weak mEH inhibitors. Acid isomers of valproic acid were not potent mEH inhibitors. CONCLUSIONS: The structural requirements for valproylamide analogues for potent in vitro mEH inhibition are: an unsubstituted amide moiety; two saturated alkyl side chains; a minimum of eight carbons in the molecule.


Assuntos
Anticonvulsivantes/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Microssomos/enzimologia , Ácido Valproico/análogos & derivados , Amidas/química , Amidas/farmacologia , Ansiolíticos/química , Ansiolíticos/farmacologia , Anticonvulsivantes/síntese química , Etilenoglicóis/metabolismo , Humanos , Isomerismo , Fígado/enzimologia , Relação Estrutura-Atividade , Ácido Valproico/síntese química , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA