RESUMO
Aedes aegypti is the primary vector of exotic arboviruses (dengue, chikungunya and Zika) in Australia. Once established across much of Australia, this mosquito species remains prevalent in central and northern Queensland. In 2011, Ae. aegypti was re-discovered in the town of Gin Gin, Queensland, by health authorities during routine larval surveillance. This town is situated on a major highway that provides a distribution pathway into the highly vulnerable and populous region of the state where the species was once common. Following the detection, larval habitat and adult control activities were conducted as a public health intervention to eliminate the Ae. aegypti population and reduce the risk of exotic disease transmission. Importantly, genetic analysis revealed a homogenous cluster and small effective population vulnerable to an elimination strategy. By 2015, adult surveillance revealed the population had expanded throughout the centre of the town. In response, a collaboration between research agencies and local stakeholders activated a second control program in 2016 that included extensive community engagement, enhanced entomologic surveillance and vector control activities including the targeting of key containers, such as unsealed rainwater tanks. Here we describe a model of the public health intervention which successfully reduced the Ae. aegypti population below detection thresholds, using source reduction, insecticides and novel, intensive genetic surveillance methods. This outcome has important implications for future elimination work in small towns in regions sub-optimal for Ae. aegypti presence and reinforces the longstanding benefits of a partnership model for public health-based interventions for invasive urban mosquito species.
Assuntos
Aedes , Dengue , Infecção por Zika virus , Zika virus , Animais , Austrália , Cidades , Dengue/epidemiologia , Larva/genética , Mosquitos Vetores , Saúde Pública , Queensland/epidemiologiaRESUMO
Background: The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and subsequently shown to reduce transmission of dengue and other pathogens, under both laboratory and field conditions. Here we describe the entomological outcomes of wMel Wolbachia mosquito releases in two small communities in Nha Trang City in central Vietnam. Methods: The wMel strain of Wolbachia was backcrossed into local Aedes aegypti genotype and mosquito releases were undertaken by community members or by staff. Field monitoring was undertaken to track Wolbachia establishment in local Ae. aegypti mosquito populations. Ecological studies were undertaken to assess relationships between environmental factors and the spatial and temporal variability in Wolbachia infection prevalence in mosquitoes. Results: Releases of wMel Wolbachia Ae. aegypti mosquitoes in two small communities in Nha Trang City resulted in the initial establishment of Wolbachia in the local Ae. aegypti mosquito populations, followed by seasonal fluctuations in Wolbachia prevalence. There was significant small-scale spatial heterogeneity in Wolbachia infection prevalence in the Tri Nguyen Village site, resulting in the loss of wMel Wolbachia infection in mosquitoes in north and center areas, despite Wolbachia prevalence remaining high in mosquitoes in the south area. In the second site, Vinh Luong Ward, Wolbachia has persisted at a high level in mosquitoes throughout this site despite similar seasonal fluctuations in wMel Wolbachia prevalence. Conclusion: Seasonal variation in Wolbachia infection prevalence in mosquitoes was associated with elevated temperature conditions, and was possibly due to imperfect maternal transmission of Wolbachia. Heterogeneity in Wolbachia infection prevalence was found throughout one site, and indicates additional factors may influence Wolbachia establishment.
RESUMO
Background: The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and subsequently shown in laboratory studies to reduce transmission of a range of viruses including dengue, Zika, chikungunya, yellow fever, and Mayaro viruses that cause human disease. Here we report the entomological and epidemiological outcomes of staged deployment of Wolbachia across nearly all significant dengue transmission risk areas in Australia. Methods: The wMel strain of Wolbachia was backcrossed into the local Aedes aegypti genotype (Cairns and Townsville backgrounds) and mosquitoes were released in the field by staff or via community assisted methods. Mosquito monitoring was undertaken and mosquitoes were screened for the presence of Wolbachia. Dengue case notifications were used to track dengue incidence in each location before and after releases. Results: Empirical analyses of the Wolbachia mosquito releases, including data on the density, frequency and duration of Wolbachia mosquito releases, indicate that Wolbachia can be readily established in local mosquito populations, using a variety of deployment options and over short release durations (mean release period 11 weeks, range 2-22 weeks). Importantly, Wolbachia frequencies have remained stable in mosquito populations since releases for up to 8 years. Analysis of dengue case notifications data demonstrates near-elimination of local dengue transmission for the past five years in locations where Wolbachia has been established. The regression model estimate of Wolbachia intervention effect from interrupted time series analyses of case notifications data prior to and after releases, indicated a 96% reduction in dengue incidence in Wolbachia treated populations (95% confidence interval: 84 - 99%). Conclusion: Deployment of the wMel strain of Wolbachia into local Ae. aegypti populations across the Australian regional cities of Cairns and most smaller regional communities with a past history of dengue has resulted in the reduction of local dengue transmission across all deployment areas.
RESUMO
Aedes aegypti (L.) (Diptera: Culicidae) is a highly invasive mosquito whose global distribution has fluctuated dramatically over the last 100 years. In Australia the distribution of Ae. aegypti once spanned the eastern seaboard, for 3,000 km north to south. However, during the 1900s this distribution markedly reduced and the mosquito disappeared from its southern range. Numerous hypotheses have been proffered for this retraction, however quantitative evidence of the mechanisms driving the disappearance are lacking. We examine historical records during the period when Ae. aegypti disappeared from Brisbane, the largest population centre in Queensland, Australia. In particular, we focus on the targeted management of Ae. aegypti by government authorities, that led to local elimination, something rarely observed in large cities. Numerous factors are likely to be responsible including the removal of larval habitat, especially domestic rainwater tanks, in combination with increased mosquito surveillance and regulatory enforcement. This account of historical events as they pertain to the elimination of Ae. aegypti from Brisbane, will inform assessments of the risks posed by recent human responses to climate change and the reintroduction of 300,000 rainwater tanks into the State over the past decade.
Assuntos
Aedes/crescimento & desenvolvimento , Dengue/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Monitoramento Epidemiológico , Controle de Mosquitos/métodos , Animais , Cidades , Ecossistema , Política de Saúde , Humanos , Queensland/epidemiologiaRESUMO
We report on the use of the Gravid Aedes Trap (GAT) as a surveillance device for Aedes albopictus (Skuse) relative to the BG-Sentinel (BGS) trap in field studies conducted in Trenton, NJ, and on Hammond Island, Queensland, Australia. A parallel study conducted in Nha Trang, Vietnam, assessed the use of the GAT as an indoor surveillance device as well as the use of canola oil as a noninsecticide killing agent. In Trenton and Hammond Island, the GAT collected fewer male (0.40 ± 0.12 and 0.43 ± 0.30, respectively) and female (3.05 ± 0.67 and 2.7 ± 2.3, respectively) Ae. albopictus than the BGS trap (males: 3.54 ± 1.26 and 3.75 ± 0.83; females: 4.66 ± 1.18 and 3.9 ± 0.23) over their respective sampling periods (i.e., 24 h for the BGS and 1 wk for the GAT). Despite differences in capture rates, the percentage of traps positive for female Ae. albopictus was similar between the BGS and GAT (Trenton: 60.1 ± 6.3% and 64.4 ± 4.1%; Hammond: 87.5 ± 6.9% and 80.0 ± 8.2%). In Nha Trang, the GAT was equally effective indoors and outdoors with (10 g hay or 3 g fish food) and without (water or empty) infusion. Additionally, no significant decrease in collections was observed between GATs set with canola oil or long-lasting insecticidal net. In summary, both traps were successful in monitoring female Ae. albopictus over their respective trapping intervals, but would be best used to complement each other to monitor both sexes and all physiological stages of female Ae. albopictus. However, the versatility and low-cost of the GAT makes it an attractive alternative to the more expensive BGS trap.
Assuntos
Aedes/fisiologia , Controle de Mosquitos/métodos , Animais , Feminino , Masculino , Controle de Mosquitos/instrumentação , VietnãRESUMO
BACKGROUND: Introduced Wolbachia bacteria can influence the susceptibility of Aedes aegypti mosquitoes to arboviral infections as well as having detrimental effects on host fitness. Previous field trials demonstrated that the wMel strain of Wolbachia effectively and durably invades Ae. aegypti populations. Here we report on trials of a second strain, wMelPop-PGYP Wolbachia, in field sites in northern Australia (Machans Beach and Babinda) and central Vietnam (Tri Nguyen, Hon Mieu Island), each with contrasting natural Ae. aegypti densities. METHODS: Mosquitoes were released at the adult or pupal stages for different lengths of time at the sites depending on changes in Wolbachia frequency as assessed through PCR assays of material collected through Biogents-Sentinel (BG-S) traps and ovitraps. Adult numbers were also monitored through BG-S traps. Changes in Wolbachia frequency were compared across hamlets or house blocks. RESULTS: Releases of adult wMelPop-Ae. aegypti resulted in the transient invasion of wMelPop in all three field sites. Invasion at the Australian sites was heterogeneous, reflecting a slower rate of invasion in locations where background mosquito numbers were high. In contrast, invasion across Tri Nguyen was relatively uniform. After cessation of releases, the frequency of wMelPop declined in all sites, most rapidly in Babinda and Tri Nguyen. Within Machans Beach the rate of decrease varied among areas, and wMelPop was detected for several months in an area with a relatively low mosquito density. CONCLUSIONS: These findings highlight challenges associated with releasing Wolbachia-Ae. aegypti combinations with low fitness, albeit strong virus interference properties, as a means of sustainable control of dengue virus transmission.
Assuntos
Aedes/microbiologia , Dengue/prevenção & controle , Insetos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Wolbachia/fisiologia , Aedes/fisiologia , Animais , Austrália/epidemiologia , Dengue/transmissão , Meio Ambiente , Feminino , Humanos , Masculino , Pupa , Vietnã/epidemiologiaRESUMO
BACKGROUND: Extended drought conditions in south-east Queensland during the early 2000s have resulted in a culture of water harvesting and legislated water restrictions. Aedes notoscriptus is a container-breeding mosquito vector of Ross River and Barmah Forest viruses. METHODS: From 2008-2009, the larval habitats and seasonal abundance of domestic container-breeding mosquitoes were recorded from three suburbs of Brisbane. A knowledge, attitudes and practice questionnaire was administered to householders. A low-cost, desktop methodology was used to predict the proportion of shaded premises compared with front-of-property estimates. RESULTS: We highlight changes in the frequency of container categories for A. notoscriptus as a response to human behavioural changes to drought. Garden accoutrements, discarded household items and water storage containers accounted for 66.2% (525/793) of positive containers and 77.5% (73 441/94 731) of all immature mosquitoes. Of all household premises surveyed, 52.6% (550/1046) contained rainwater tanks and 29.4% (308/1046) harvested water in other containers, contrasting with a previous 1995 survey where neither category was observed. Both Premise Condition Index and shade directly correlated with positive premises. CONCLUSIONS: Human response to drought has resulted in new habitats for domestic container-breeding mosquitoes. This recent trend of prolific water storage is similar to earlier years (1904-1943) in Brisbane when Aedes aegypti was present and dengue epidemics occurred.
Assuntos
Aedes/fisiologia , Cruzamento/estatística & dados numéricos , Secas , Ecossistema , Abastecimento de Água/análise , Água , Aedes/crescimento & desenvolvimento , Análise de Variância , Animais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Queensland , Fatores de Risco , Estações do Ano , Saúde Suburbana/estatística & dados numéricos , Inquéritos e Questionários , Abastecimento de Água/estatística & dados numéricosRESUMO
Aedes notoscriptus (Skuse), a mosquito from the southwest Pacific region including Australia, has been implicated as a vector of arboviruses, but its status as a species is unclear. To investigate the taxonomic situation, we assessed genetic variation and phylogenetic relationships among Ae. notoscriptus from the east coast of Australia, Western Australia and New Zealand. Phylogenetic analyses of DNA sequence data from mitochondrial markers indicate that Ae. notoscriptus is a complex of divergent genetic lineages, some of which appear geographically restricted, while others are widespread in eastern Australia. Samples from New Zealand and Western Australia were related to populations from one southern Australian lineage. Nuclear markers show no evidence of genetic isolation by geographic distance in the overall sample of mosquitoes, but strong isolation by distance is obvious within two of the lineages, supporting their status as isolated gene pools. The morphological character of wing centroid size variation is also associated with genetic lineage. These findings point to the possibility that Ae. notoscriptus is a complex of species, highlighting the need to understand physiological and ecological differences that may influence future control strategies.