Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Diagnostics (Basel) ; 13(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832237

RESUMO

Experts have used ultrasound imaging to manually determine follicle count and perform measurements, especially in cases of polycystic ovary syndrome (PCOS). However, due to the laborious and error-prone process of manual diagnosis, researchers have explored and developed medical image processing techniques to help with diagnosing and monitoring PCOS. This study proposes a combination of Otsu's thresholding with the Chan-Vese method to segment and identify follicles in the ovary with reference to ultrasound images marked by a medical practitioner. Otsu's thresholding highlights the pixel intensities of the image and creates a binary mask for use with the Chan-Vese method to define the boundary of the follicles. The acquired results were compared between the classical Chan-Vese method and the proposed method. The performances of the methods were evaluated in terms of accuracy, Dice score, Jaccard index and sensitivity. In overall segmentation evaluation, the proposed method showed superior results compared to the classical Chan-Vese method. Among the calculated evaluation metrics, the sensitivity of the proposed method was superior, with an average of 0.74 ± 0.12. Meanwhile, the average sensitivity for the classical Chan-Vese method was 0.54 ± 0.14, which is 20.03% lower than the sensitivity of the proposed method. Moreover, the proposed method showed significantly improved Dice score (p = 0.011), Jaccard index (p = 0.008) and sensitivity (p = 0.0001). This study showed that the combination of Otsu's thresholding and the Chan-Vese method enhanced the segmentation of ultrasound images.

2.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35271099

RESUMO

The Internet of Things (IoT) empowers the development of heterogeneous systems for various application domains using embedded devices and diverse data transmission protocols. Collaborative integration of these systems in the industrial domain leads to incompatibility and interoperability at different automation levels, requiring unified coordination to exchange information efficiently. The hardware specifications of these devices are resource-constrained, limiting their performance in resource allocation, data management, and remote process supervision. Hence, unlocking network capabilities with other domains such as cloud and web services is required. This study proposed a platform-independent middleware module incorporating the Open Platform Communication Unified Architecture (OPC UA) and Representational State Transfer (REST) paradigms. The object-oriented structure of this middleware allows information contextualization to address interoperability issues and offers aggregated data integration with other domains. RESTful web and cloud platforms were implemented to collect this middleware data, provide remote application support, and enable aggregated resource allocation in a database server. Several performance assessments were conducted on the developed system deployed in Raspberry Pi and Intel NUC PC, which showed acceptable platform resource utilization regarding CPU, bandwidth, and power consumption, with low service, update, and response time requirements. This integrated approach demonstrates an excellent cost-effective prospect for interoperable Machine-to-Machine (M2M) communication, enables remote process supervision, and offers aggregated bulk data management with wider domains.


Assuntos
Computação em Nuvem , Internet das Coisas , Comunicação
3.
J Imaging ; 8(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200743

RESUMO

Advances in computing and AI technology have promoted the development of connected health systems, indirectly influencing approaches to cataract treatment. In addition, thanks to the development of methods for cataract detection and grading using different imaging modalities, ophthalmologists can make diagnoses with significant objectivity. This paper aims to review the development and limitations of published methods for cataract detection and grading using different imaging modalities. Over the years, the proposed methods have shown significant improvement and reasonable effort towards automated cataract detection and grading systems that utilise various imaging modalities, such as optical coherence tomography (OCT), fundus, and slit-lamp images. However, more robust and fully automated cataract detection and grading systems are still needed. In addition, imaging modalities such as fundus, slit-lamps, and OCT images require medical equipment that is expensive and not portable. Therefore, the use of digital images from a smartphone as the future of cataract screening tools could be a practical and helpful solution for ophthalmologists, especially in rural areas with limited healthcare facilities.

4.
Micromachines (Basel) ; 12(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34945316

RESUMO

In this paper, the performance of an active neutral point clamped (ANPC) inverter is evaluated, which is developed utilizing both silicon (Si) and gallium trioxide (Ga2O3) devices. The hybridization of semiconductor devices is performed since the production volume and fabrication of ultra-wide bandgap (UWBG) semiconductors are still in the early-stage, and they are highly expensive. In the proposed ANPC topology, the Si devices are operated at a low switching frequency, while the Ga2O3 switches are operated at a higher switching frequency. The proposed ANPC mitigates the fault current in the switching devices which are prevalent in conventional ANPCs. The proposed ANPC is developed by applying a specified modulation technique and an intelligent switching arrangement, which has further improved its performance by optimizing the loss distribution among the Si/Ga2O3 devices and thus effectively increases the overall efficiency of the inverter. It profoundly reduces the common mode current stress on the switches and thus generates a lower common-mode voltage on the output. It can also operate at a broad range of power factors. The paper extensively analyzed the switching performance of UWBG semiconductor (Ga2O3) devices using double pulse testing (DPT) and proper simulation results. The proposed inverter reduced the fault current to 52 A and achieved a maximum efficiency of 99.1%.

5.
Micromachines (Basel) ; 12(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577776

RESUMO

This research proposes a three-phase six-level multilevel inverter depending on twelve-switch three-phase Bridge and multilevel DC-link. The proposed architecture increases the number of voltage levels with less power components than conventional inverters such as the flying capacitor, cascaded H-bridge, diode-clamped and other recently established multilevel inverter topologies. The multilevel DC-link circuit is constructed by connecting three distinct DC voltage supplies, such as single DC supply, half-bridge and full-bridge cells. The purpose of both full-bridge and half-bridge cells is to provide a variable DC voltage with a common voltage step to the three-phase bridge's mid-point. A vector modulation technique is also employed to achieve the desired output voltage waveforms. The proposed inverter can operate as a six-level or two-level inverter, depending on the magnitude of the modulation indexes. To guarantee the feasibility of the proposed configuration, the proposed inverter's prototype is developed, and the experimental results are provided. The proposed inverter showed good performance with high efficiency of 97.59% following the IEEE 1547 standard. The current harmonics of the proposed inverter was also minimized to only 5.8%.

6.
Sci Rep ; 11(1): 18315, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526627

RESUMO

The oil yield, measured in oil extraction rate per hectare in the palm oil industry, is directly affected by the ripening levels of the oil palm fresh fruit bunches at the point of harvesting. A rapid, non-invasive and reliable method in assessing the maturity level of oil palm harvests will enable harvesting at an optimum time to increase oil yield. This study shows the potential of using Raman spectroscopy to assess the ripeness level of oil palm fruitlets. By characterizing the carotene components as useful ripeness features, an automated ripeness classification model has been created using machine learning. A total of 46 oil palm fruit spectra consisting of 3 ripeness categories; under ripe, ripe, and over ripe, were analyzed in this work. The extracted features were tested with 19 classification techniques to classify the oil palm fruits into the three ripeness categories. The Raman peak averaging at 1515 cm-1 is shown to be a significant molecular fingerprint for carotene levels, which can serve as a ripeness indicator in oil palm fruits. Further signal analysis on the Raman peak reveals 4 significant sub bands found to be lycopene (ν1a), ß-carotene (ν1b), lutein (ν1c) and neoxanthin (ν1d) which originate from the C=C stretching vibration of carotenoid molecules found in the peel of the oil palm fruit. The fine KNN classifier is found to provide the highest overall accuracy of 100%. The classifier employs 6 features: peak intensities of bands ν1a to ν1d and peak positions of bands ν1c and ν1d as predictors. In conclusion, the Raman spectroscopy method has the potential to provide an accurate and effective way in determining the ripeness of oil palm fresh fruits.

7.
Nat Commun ; 11(1): 3792, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733048

RESUMO

Three-phase induction motors (TIMs) are widely used for machines in industrial operations. As an accurate and robust controller, fuzzy logic controller (FLC) is crucial in designing TIMs control systems. The performance of FLC highly depends on the membership function (MF) variables, which are evaluated by heuristic approaches, leading to a high processing time. To address these issues, optimisation algorithms for TIMs have received increasing interest among researchers and industrialists. Here, we present an advanced and efficient quantum-inspired lightning search algorithm (QLSA) to avoid exhaustive conventional heuristic procedures when obtaining MFs. The accuracy of the QLSA based FLC (QLSAF) speed control is superior to other controllers in terms of transient response, damping capability and minimisation of statistical errors under diverse speeds and loads. The performance of the proposed QLSAF speed controller is validated through experiments. Test results under different conditions show consistent speed responses and stator currents with the simulation results.

8.
Sci Rep ; 10(1): 4687, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170100

RESUMO

State of charge (SOC) is a crucial index used in the assessment of electric vehicle (EV) battery storage systems. Thus, SOC estimation of lithium-ion batteries has been widely investigated because of their fast charging, long-life cycle, and high energy density characteristics. However, precise SOC assessment of lithium-ion batteries remains challenging because of their varying characteristics under different working environments. Machine learning techniques have been widely used to design an advanced SOC estimation method without the information of battery chemical reactions, battery models, internal properties, and additional filters. Here, the capacity of optimized machine learning techniques are presented toward enhanced SOC estimation in terms of learning capability, accuracy, generalization performance, and convergence speed. We validate the proposed method through lithium-ion battery experiments, EV drive cycles, temperature, noise, and aging effects. We show that the proposed method outperforms several state-of-the-art approaches in terms of accuracy, adaptability, and robustness under diverse operating conditions.

9.
Sensors (Basel) ; 19(9)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064098

RESUMO

The automatic traffic sign detection and recognition (TSDR) system is very important research in the development of advanced driver assistance systems (ADAS). Investigations on vision-based TSDR have received substantial interest in the research community, which is mainly motivated by three factors, which are detection, tracking and classification. During the last decade, a substantial number of techniques have been reported for TSDR. This paper provides a comprehensive survey on traffic sign detection, tracking and classification. The details of algorithms, methods and their specifications on detection, tracking and classification are investigated and summarized in the tables along with the corresponding key references. A comparative study on each section has been provided to evaluate the TSDR data, performance metrics and their availability. Current issues and challenges of the existing technologies are illustrated with brief suggestions and a discussion on the progress of driver assistance system research in the future. This review will hopefully lead to increasing efforts towards the development of future vision-based TSDR system.

10.
Comput Methods Programs Biomed ; 154: 71-78, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29249348

RESUMO

BACKGROUND AND BJECTIVE: Pterygium is an ocular disease caused by fibrovascular tissue encroachment onto the corneal region. The tissue may cause vision blurring if it grows into the pupil region. In this study, we propose an automatic detection method to differentiate pterygium from non-pterygium (normal) cases on the basis of frontal eye photographed images, also known as anterior segment photographed images. METHODS: The pterygium screening system was tested on two normal eye databases (UBIRIS and MILES) and two pterygium databases (Australia Pterygium and Brazil Pterygium). This system comprises four modules: (i) a preprocessing module to enhance the pterygium tissue using HSV-Sigmoid; (ii) a segmentation module to differentiate the corneal region and the pterygium tissue; (iii) a feature extraction module to extract corneal features using circularity ratio, Haralick's circularity, eccentricity, and solidity; and (iv) a classification module to identify the presence or absence of pterygium. System performance was evaluated using support vector machine (SVM) and artificial neural network. RESULTS: The three-step frame differencing technique was introduced in the corneal segmentation module. The output image successfully covered the region of interest with an average accuracy of 0.9127. The performance of the proposed system using SVM provided the most promising results of 88.7%, 88.3%, and 95.6% for sensitivity, specificity, and area under the curve, respectively. CONCLUSION: A basic platform for computer-aided pterygium screening was successfully developed using the proposed modules. The proposed system can classify pterygium and non-pterygium cases reasonably well. In our future work, a standard grading system will be developed to identify the severity of pterygium cases. This system is expected to increase the awareness of communities in rural areas on pterygium.


Assuntos
Segmento Anterior do Olho/diagnóstico por imagem , Aumento da Imagem/métodos , Fotografação/métodos , Pterígio/diagnóstico por imagem , Área Sob a Curva , Córnea/diagnóstico por imagem , Sistemas de Gerenciamento de Base de Dados , Humanos , Modelos Teóricos , Rede Nervosa , Sensibilidade e Especificidade , Máquina de Vetores de Suporte
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 365-368, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29059886

RESUMO

Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.


Assuntos
Vasos Retinianos , Algoritmos , Bases de Dados Factuais , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Reconhecimento Automatizado de Padrão
12.
Waste Manag ; 43: 509-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26072186

RESUMO

In the backdrop of prompt advancement, information and communication technology (ICT) has become an inevitable part to plan and design of modern solid waste management (SWM) systems. This study presents a critical review of the existing ICTs and their usage in SWM systems to unfold the issues and challenges towards using integrated technologies based system. To plan, monitor, collect and manage solid waste, the ICTs are divided into four categories such as spatial technologies, identification technologies, data acquisition technologies and data communication technologies. The ICT based SWM systems classified in this paper are based on the first three technologies while the forth one is employed by almost every systems. This review may guide the reader about the basics of available ICTs and their application in SWM to facilitate the search for planning and design of a sustainable new system.


Assuntos
Monitoramento Ambiental/métodos , Eliminação de Resíduos/métodos , Sistemas de Informação Geográfica , Internet , Dispositivo de Identificação por Radiofrequência , Tecnologia de Sensoriamento Remoto , Resíduos Sólidos , Tecnologia
13.
Biomed Eng Online ; 14: 6, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25595511

RESUMO

BACKGROUND: Content-based medical image retrieval (CBMIR) system enables medical practitioners to perform fast diagnosis through quantitative assessment of the visual information of various modalities. METHODS: In this paper, a more robust CBMIR system that deals with both cervical and lumbar vertebrae irregularity is afforded. It comprises three main phases, namely modelling, indexing and retrieval of the vertebrae image. The main tasks in the modelling phase are to improve and enhance the visibility of the x-ray image for better segmentation results using active shape model (ASM). The segmented vertebral fractures are then characterized in the indexing phase using region-based fracture characterization (RB-FC) and contour-based fracture characterization (CB-FC). Upon a query, the characterized features are compared to the query image. Effectiveness of the retrieval phase is determined by its retrieval, thus, we propose an integration of the predictor model based cross validation neural network (PMCVNN) and similarity matching (SM) in this stage. The PMCVNN task is to identify the correct vertebral irregularity class through classification allowing the SM process to be more efficient. Retrieval performance between the proposed and the standard retrieval architectures are then compared using retrieval precision (Pr@M) and average group score (AGS) measures. RESULTS: Experimental results show that the new integrated retrieval architecture performs better than those of the standard CBMIR architecture with retrieval results of cervical (AGS > 87%) and lumbar (AGS > 82%) datasets. CONCLUSIONS: The proposed CBMIR architecture shows encouraging results with high Pr@M accuracy. As a result, images from the same visualization class are returned for further used by the medical personnel.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Doenças da Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Algoritmos , Vértebras Cervicais/diagnóstico por imagem , Bases de Dados Factuais , Humanos , Vértebras Lombares/diagnóstico por imagem , Redes Neurais de Computação
14.
PLoS One ; 9(12): e114518, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485630

RESUMO

Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed.


Assuntos
Teorema de Bayes , Tomada de Decisões , Plásticos/análise , Plásticos/química , Polietilenotereftalatos/análise , Gerenciamento de Resíduos , Humanos , Reciclagem
15.
Sensors (Basel) ; 14(7): 11522-41, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24984057

RESUMO

The use of wireless communication using inductive links to transfer data and power to implantable microsystems to stimulate and monitor nerves and muscles is increasing. This paper deals with the development of the theoretical analysis and optimization of an inductive link based on coupling and on spiral circular coil geometry. The coil dimensions offer 22 mm of mutual distance in air. However, at 6 mm of distance, the coils offer a power transmission efficiency of 80% in the optimum case and 73% in the worst case via low input impedance, whereas, transmission efficiency is 45% and 32%, respectively, via high input impedance. The simulations were performed in air and with two types of simulated human biological tissues such as dry and wet-skin using a depth of 6 mm. The performance results expound that the combined magnitude of the electric field components surrounding the external coil is approximately 98% of that in air, and for an internal coil, it is approximately 50%, respectively. It can be seen that the gain surrounding coils is almost constant and confirms the omnidirectional pattern associated with such loop antennas which reduces the effect of non-alignment between the two coils. The results also show that the specific absorption rate (SAR) and power loss within the tissue are lower than that of the standard level. Thus, the tissue will not be damaged anymore.


Assuntos
Desenho Assistido por Computador , Transferência de Energia , Modelos Biológicos , Próteses e Implantes , Fenômenos Fisiológicos da Pele , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação , Ar , Desenho de Equipamento , Análise de Falha de Equipamento , Telemetria/métodos
16.
Biomed Eng Online ; 13: 79, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24950601

RESUMO

The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries.


Assuntos
Fontes de Energia Elétrica , Equipamentos e Provisões , Próteses e Implantes , Humanos
17.
Biomed Tech (Berl) ; 59(3): 257-68, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24445231

RESUMO

Use of transcutaneous inductive links is a widely known method for the wireless powering of bio-implanted devices such as implanted microsystems. The design of the coil for inductive links is generally not optimal. In this study, inductive links were used on the basis of the small loop antenna theory to reduce the effects of lateral coil misalignments on the biological human tissue model at 13.56 MHz. The tissue, which measures 60 mm×70 mm×5 mm, separates the reader and the implanted coils. The aligned coils and the lateral misalignment coils were investigated in different parametric x-distance misalignments. The optimal coil layout was developed on the basis of the layout rules presented in previous studies. Results show that the gain around the coils, which were separated by wet and dry skin, was constant and confirmed the omnidirectional radiation pattern even though the lateral misalignment between coils was smaller or greater than the implanted coil radius. This misalignment can be <4 mm or >6 mm up to 8 mm. Moreover, coil misalignments and skin condition do not affect the efficient performance of the coil.


Assuntos
Fontes de Energia Elétrica , Transferência de Energia , Magnetismo/instrumentação , Modelos Biológicos , Próteses e Implantes , Implantação de Prótese/métodos , Tecnologia sem Fio/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
18.
Waste Manag ; 34(2): 281-90, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24238802

RESUMO

The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensor intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Eliminação de Resíduos/instrumentação , Eliminação de Resíduos/métodos , Software , Gerenciamento de Resíduos/métodos , Malásia , Meios de Transporte/métodos
19.
Sensors (Basel) ; 14(12): 23843-70, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25615728

RESUMO

With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices.


Assuntos
Fontes de Energia Elétrica , Eletrônica Médica/métodos , Próteses e Implantes , Processamento de Sinais Assistido por Computador , Amplificadores Eletrônicos , Humanos , Ondas de Rádio , Software , Telemetria/métodos
20.
Sensors (Basel) ; 13(8): 9966-98, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23921828

RESUMO

Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Fotografação/métodos , Gravação em Vídeo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA