Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(29): 31335-31343, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39072089

RESUMO

ATP upregulation is a significant driver of aggressive cancer cell phenotypes. Phosphometabolites participate in metabolic pathways and are overexpressed in cancer cell activity. Therefore, developing novel and accurate methods for detecting phosphometabolites in biological fluids is essential. In this research, a novel zeolite composite comprising magnesium, aluminum, and lanthanum hydroxides (MALZ) is developed and used for the first time to enrich phosphorylated metabolites via its inherent interaction with phosphate groups. SEM micrographs show a crystalline cubic structure with a small diameter of 36.62 nm. FTIR analysis confirms the phosphate adsorption and desorption using AMP and ATP as the standards. XRD analysis of MALZ provides structural information about the synthesized composite. Adsorption-desorption parameters, such as pH, shaking time, and MALZ concentration, are optimized to analyze the binding capacity of the fabricated material for phosphorylated metabolites. A kinetic study reveals the rapid and effective AMP and ATP adsorptions on MALZ. The multiple hydroxyl groups of ternary hydroxides and high affinity of lanthanum toward the phosphate group enrich 26 phosphometabolites from serum samples of malignant neoplastic patients. The LC-MS profile shows characteristic phosphometabolites that may act as signatures of cancer-related abnormal metabolic pathways. This study may provide an experimental pathway for detecting metabolites in human body fluids.

2.
Eur J Pharm Biopharm ; 200: 114312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735345

RESUMO

BACKGROUND: Nanomedicine, as the combination of radiopharmaceutical and nanocarrier (QDs), is developed for treating cancer. Gallic acid is antimutagenic, anti-inflammatory, and anti-carcinogenic. Typical retention time of gallic acid is approximately 4 to 8 h. To increase the retention time gallic acid is converted to prodrug by adding lipophilic moieties, encapsulating in lipophilic nanoparticles, or liposome formation. Similarly, thymoquinone is powerful antioxidant, anti-apoptotic, and anti-inflammatory effect, with reduced DNA damage. METHODS: In this study, a hydrophilic drug (gallic acid) is chemically linked to the hydrophobic drug (thymohydroquinone) to overcome the limitations of co-delivery of drugs. Thymohydroquinone (THQG) as the combination of gallic acid (GA) and thymoquinone (THQ) is loaded onto the PEI functionalized antimonene quantum dots (AM-QDs) and characterized by FTIR, UV-visible spectroscopy, X-ray powder diffraction, Zeta sizer, SEM and AFM, in-vitro and in-vivo assay, and hemolysis. RESULTS: The calculated drug loading efficiency is 90 %. Drug release study suggests the drug combination is pH sensitive and it can encounters acidic pH, releasing the drug from the nanocarrier. The drug and drug-loaded nanocarrier possesses low cytotoxicity and cell viability on MCF-7 and Cal-27 cell lines. The proposed drug delivery system is radiolabeled with Iodine-131 (131I) and Technetium (99mTc) and its deposition in various organs of rats' bodies is examined by SPECT-CT and gamma camera. Hemolytic activity of 2, 4, 6, and 8 µg/mL is 1.78, 4.16, 9.77, and 15.79 %, respectively, reflecting low levels of hemolysis. The system also sustains oxidative stress in cells and environment, decreasing ROS production to shield cells and keep them healthy. CONCLUSIONS: The results of this study suggest that the proposed drug carrier system can be used as a multi-modal theragnostic agent in cancer treatment.


Assuntos
Ácido Gálico , Pontos Quânticos , Animais , Ratos , Ácido Gálico/química , Ácido Gálico/farmacologia , Pontos Quânticos/química , Humanos , Concentração de Íons de Hidrogênio , Benzoquinonas/química , Benzoquinonas/administração & dosagem , Benzoquinonas/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Masculino , Células MCF-7 , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos
3.
Int J Biol Macromol ; 269(Pt 2): 132146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734342

RESUMO

In this research, a sitagliptin-lignin biopolymer (SL) containing zinc selenide quantum dots (ZnSe QDs) and doxorubicin (doxo) was synthesized. The fabricated polymeric drug delivery system was characterized via FTIR, XRD, SEM, TGA, IR, and DSC. SLQD-Doxo exhibited an irregular surface with a 32 nm diameter and well-defined surface chemistry. Drug loading efficiency was assessed at different concentrations, pH levels, time intervals, and temperatures, and drug kinetics were calculated. Maximum drug release was observed at 6 µmol concentration after 24 h, pH of 6.5 and 45 °C. The maximum drug encapsulation efficiency was 81.75 %. SLQD-Doxo demonstrated 24.4 ± 1.04 % anti-inflammatory activity, and the maximum lipoxygenase inhibition in a concentration-dependent manner was 71.45 ± 2.02 %, compared to indomethacin, a standard anticancer drug. The designed system was applied to breast cancer MCF-7 cells to evaluate anticancer activity. Cytotoxicity of SLQD-Doxo resulted in 24.48 ± 1.64 dead cells and 74.39 ± 4.12 viable cells. Lignin's polyphenolic nature resulted in good antioxidant activity of LLQD-Doxo. The combination of SLQD-Doxo was appropriate for drug delivery at high temperatures and acidic pH of tumor cells compared to healthy cells.


Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Lignina , Fosfato de Sitagliptina , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Humanos , Lignina/química , Lignina/farmacologia , Células MCF-7 , Fosfato de Sitagliptina/química , Fosfato de Sitagliptina/farmacologia , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Polímeros/química , Pontos Quânticos/química , Concentração de Íons de Hidrogênio , Antioxidantes/farmacologia , Antioxidantes/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos
4.
Langmuir ; 40(11): 5639-5650, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38447102

RESUMO

Superhydrophobic textiles with multifunctional characteristics are highly desired and have attracted tremendous research attention. This research employs a simple dip-coating method to obtain a fluorine-free silica-based superhydrophobic and superoleophilic cotton fabric. Pristine cotton fabric is coated with SiO2 nanoparticles and octadecylamine. SiO2 nanoparticles are anchored on the cotton fabric to increase surface roughness, and octadecyl amine lowers the surface energy, turning the hydrophilic cotton fabric into superhydrophobic. The designed cotton fabric exhibits a water contact angle of 159° and a sliding angle of 7°. The prepared cotton fabric is characterized by attenuated total reflectance-fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the coated fabric reveals excellent features, including mechanical and chemical stability, superhydrophobicity, superoleophilicity, and the self-cleaning ability. SiO2 nanoparticles and octadecylamine-coated cotton fabric demonstrate exceptional oil-water separation and wastewater remediation performance by degrading the methylene blue solution up to 89% under visible light. The oil-water separation ability is tested against five different oils with more than 90% separation efficiency. This strategy has the advantages of low-cost precursors, a simple and scalable coating method, enhanced superhydrophobicity and superoleophilicity, self-cleaning ability, efficient oil-water separation, and exceptional wastewater remediation performance.

5.
Mikrochim Acta ; 191(3): 164, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413405

RESUMO

A reliable, rapid, and inexpensive nano-sized chemosensor is presented for methamidophos (MET) - an insecticide. Poly(lactic acid) (PLA)-stabilized gold nanoparticles (AuNPs) were synthesized by a simple one-pot, two-phase chemical reduction method. The synthesized PLA-AuNPs were subsequently employed for selective, efficient, and quantitative detection of MET. MET is one of the highly toxic pesticides used for eradication of agricultural and urban insects. Upon the addition of MET, the wine-red color of PLA-AuNPs swiftly transformed into greyish-blue, further corroborated by a significant bathochromic and hyperchromic shift in the SPR band. The presence of other interfering insecticides, metal salts, and drugs did not have any pronounced effect on quantitative MET detection. The detection limit, the quantification limit, and linear dynamic range of MET utilizing PLA-AuNPs were  0.0027 µM, 0.005 µM, and 0.005-1000 µM, respectively. The PLA-AuNP-based assay renders an efficient, rapid, accurate, and selective quantification of MET in food, biological, and environmental samples. The proposed sensor provides an appropriate platform for fast and on-the-spot determination of MET without requiring a well-equipped lab setup.


Assuntos
Inseticidas , Nanopartículas Metálicas , Compostos Organotiofosforados , Ouro , Inseticidas/análise , Colorimetria/métodos , Poliésteres
6.
Chemosphere ; 352: 141280, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278447

RESUMO

Novel 2D layered MXene materials were first reported in 2011 at Drexel University. MXenes are widely used in multidisciplinary applications due to their anomalous electrical conductivity, high surface area, and chemical, mechanical, and physical properties. This review summarises MXene synthesis and applications in environmental sensing. The first section describes different methods for MXene synthesis, including fluorinated and non-fluorinated methods. MXene's layered structure, surface terminal groups, and the space between layers significantly impact its properties. Different methods to separate different MXene layers are also discussed using various intercalation reagents and commercially synthesized MXene without compromising the environment. This review also explains the effect of MXene's surface functionalization on its characteristics. The second section of the review describes gas and pesticide sensing applications of Mxenes and its composites. Its good conductivity, surface functionalization with negatively charged groups, intrinsic chemical nature, and good mechanical stability make it a prominent material for room temperature sensing of environmental samples, such as polar and nonpolar gases, volatile organic compounds, and pesticides. This review will enhance the young scientists' knowledge of MXene-based materials and stimulate their diversity and hybrid conformation in environmental sensing applications.


Assuntos
Gases , Praguicidas , Elementos de Transição , Humanos , Condutividade Elétrica , Nitritos
7.
ACS Appl Mater Interfaces ; 16(1): 1688-1704, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38110286

RESUMO

Fluorescent metal-organic frameworks (MOFs) are promising sensing materials with tunable and robust structural properties and remarkable luminescent capabilities. In this study, a novel dual-emission fluorescent metal-organic framework (EY@MOF-5) composite is synthesized by a one-pot bottle-around-ship approach. Eosin Y (EY) is encapsulated in MOF-5 to enhance its fluorescence properties and selectivity, effectively addressing typical MOF-5 limitations. EY@MOF-5 serves as a versatile dual-functional fluorescent sensor for two different analytes, daclatasvir (DCT) and nitenpyram (NTP), showing an impressive linear range of 10-200 nM and 0.1-300 µM, with detection limits of 233 pM and 65 nM, respectively. The established method is ultrafast, highly sensitive, and extremely selective for DCT and NTP detection in complex biological and food samples. Fluorescence results are compared and validated with the recommended UPLC method. Then, a smartphone-integrated sensing system is introduced for on-site, real-time, and quantitative analysis of DCT and NTP. The smartphone-assisted intelligent sensing method manifests promising results for DCT and NTP monitoring in biological and food samples, demonstrating its promising potential for the on-site detection of biologically and environmentally significant analytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA