Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Expert Opin Ther Pat ; 34(1-2): 71-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573177

RESUMO

INTRODUCTION: The neuropeptide relaxin-3/RXFP3 system belongs to the relaxin/insulin superfamily and is involved in many important physiological processes, such as stress responses, appetite control, and motivation for reward. Although relaxin-3 is the endogenous agonist for RXFP3, it can also bind to and activate RXFP1 and RXFP4. Consequently, research has been focused on the development of RXFP3-specific peptides and small-molecule ligands to validate the relaxin-3/RXFP3 system as a novel drug target. AREAS COVERED: This review provides an overview of patents on the relaxin-3/RXFP3 system covering ligand development and pharmacological studies since 2003. Related patents and literature reports were obtained from established sources including SciFinder, Google Patents, and Espacenet for patents and SciFinder, PubMed, and Google Scholar for literature reports. EXPERT OPINION: There has been an increasing amount of patent activities around relaxin-3/RXFP3, highlighting the importance of this novel neuropeptide system for drug discovery. The development of relaxin-3 derived peptides and small-molecule modulators, as well as behavioral studies in rodents, have shown that the relaxin-3/RXFP3 system is a promising drug target for treating various metabolic and neuropsychiatric diseases including obesity, anxiety, and alcohol addiction.


Assuntos
Neuropeptídeos , Relaxina , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Patentes como Assunto , Insulina/metabolismo , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/metabolismo
2.
Org Biomol Chem ; 21(9): 1980-1991, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36785915

RESUMO

The alterations in the expression patterns of protein kinases often implicate human cancer initiation and progression. Human tousled-like kinases (TLKs), both TLK1/1B and TLK2, are evolutionary kinases found in cell signaling pathways and are involved in DNA repair, replication, and chromosomal integrity. Several reports have demonstrated the numerous roles of TLK1B in the development and progression of cancer via its interactions with different partners, and this direct association has made them viable molecular targets for cancer therapy. Previous studies have shown phenothiazines to be potent TLK1B inhibitors. Herein, we report the design and synthesis of a class of phenothiazine molecules and their biological inhibitory effect on hTLK1B/KD through in vitro kinase assays, cellular assays, and in silico studies. We identified a few inhibitors with better inhibition and physio-chemical properties than the reported TLK1B inhibitors using a recombinant human tousled-like kinase 1B-kinase domain (hTLK1B-KD). Very interestingly, inhibitory activity with LNCap cells was found to be on the sub-nanomolar level. Our attempts to study the newly designed phenothiazine analogs, as well as generate a stable catalytically active hTLK1B-KD in high yield, represent a fundamental step towards the structure-based design of future TLK-specific inhibitors.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Cinética , Neoplasias/genética , Fenotiazinas , Proteínas Serina-Treonina Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia
3.
J Am Chem Soc ; 143(42): 17761-17768, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637287

RESUMO

Expanding the chemical space of evolvable non-natural genetic polymers (XNAs) to include functional groups that enhance protein target binding affinity offers a promising route to therapeutic aptamers with high biological stability. Here we describe the chemical synthesis and polymerase recognition of 10 chemically diverse functional groups introduced at the C-5 position of α-l-threofuranosyl uridine nucleoside triphosphate (tUTP). We show that the set of tUTP substrates is universally recognized by the laboratory-evolved polymerase Kod-RSGA. Insights into the mechanism of TNA synthesis were obtained from a high-resolution X-ray crystal structure of the postcatalytic complex bound to the primer-template duplex. A structural analysis reveals a large cavity in the enzyme active site that can accommodate the side chain of C-5-modified tUTP substrates. Our findings expand the chemical space of evolvable nucleic acid systems by providing a synthetic route to artificial genetic polymers that are uniformly modified with diversity-enhancing functional groups.


Assuntos
DNA Polimerase Dirigida por DNA , Tetroses , Uridina Trifosfato , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Nucleosídeos/química , Ligação Proteica , Tetroses/síntese química , Tetroses/química , Tetroses/metabolismo , Thermococcus/enzimologia , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/síntese química , Uridina Trifosfato/metabolismo
4.
iScience ; 23(9): 101474, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32905878

RESUMO

Through in vitro kinase assays and docking studies, we report the synthesis and biological evaluation of a phenothiazine analog J54 with potent TLK1 inhibitory activity for prostate cancer (PCa) therapy. Most PCa deaths result from progressive failure in standard androgen deprivation therapy (ADT), leading to metastatic castration-resistant PCa. Treatments that can suppress the conversion to mCRPC have high potential to be rapidly implemented in the clinics. ADT results in increased expression of TLK1B, a key kinase upstream of NEK1 and ATR and mediating the DNA damage response that typically results in temporary cell-cycle arrest of androgen-responsive PCa cells, whereas its abrogation leads to apoptosis. We studied J54 as a potent inhibitor of this axis and as a mediator of apoptosis in vitro and in LNCaP xenografts, which has potential for clinical investigation in combination with ADT. J54 has low affinity for the dopamine receptor in modeling and competition studies and weak detrimental behavioral effects in mice and C. elegans.

5.
Curr Top Med Chem ; 20(29): 2708-2722, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885752

RESUMO

KRAS mutations are known to be the most recurrent gain-of-function changes instigated in patients with cancer. The RAS gene family is often mutated in most of the human cancers, and the pursuit of inhibitors that bind to mutant RAS continues as a foremost target. RAS is a small GTPase that controls numerous cellular functions, including cell proliferation, growth, survival, and gene expression. RAS is hence closely engaged in cancer pathogenesis. The recent achievements in the discovery of RAS inhibitors imply that the inhibition of RAS oncogene may soon go into clinical trials. This review article describes the role of RAS in cancer drug discovery, the diverse methodologies used to develop direct or indirect RAS inhibitors, and emphasize the current accomplishments in the progress of novel RAS inhibitors. In short, this review focuses on the different attributes of RAS that have been targeted by a range of inhibitors consisting of membrane localization, the active form of RAS, downstream regulator binding, and nucleotide exchange binding. A detailed explanation of RAS and its involvement in cancer drug discovery together with historical aspects are mentioned first followed by a brief outline of the different approaches to target RAS.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Antineoplásicos/química , Descoberta de Drogas , Humanos , Mutação , Neoplasias/metabolismo , Proteínas ras/genética
6.
Bioorg Med Chem Lett ; 30(16): 127290, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631512

RESUMO

Ras is a small family of GTPases that control numerous cellular functions like cell proliferation, growth, survival, gene expression, and is closely engaged in cancer pathogenesis. The ras-targeted methodology entails a holy grail in oncology. Nevertheless, there are no specific molecules reported targeting the same, although it is a known oncogene for more than three decades. In this study, we have designed and synthesized new phosphate derivatives of Myo-inositol to inhibit the oncogenic KRAS pathway in breast cancer cells, which has been validated by cellular and theoretical studies. The synthesized compound 1b (C2-O-phosphate derivative of Myo-inositol 1,3,5-orthobenzoate) inhibited the downstream signaling pathway of oncogenic KRAS, RAF/MEK/ERK. Furthermore, we also found that this compound induced necrosis/apoptosis and causes cell cycle arrest. This class of molecules may work as a potential inhibitor of breast cancer caused by a mutation in KRAS and its downstream proteins. Though the efficacy of the molecules is in the micromolar scale, they have not been explored previously for RAS inhibition. Impressive preliminary results are presented in this article which could be further explored for its detailed biological studies to get better candidates as RAS inhibitors.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inositol/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inositol/síntese química , Inositol/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA