Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583246

RESUMO

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Assuntos
Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Proteólise/efeitos dos fármacos , Estrutura Molecular , Peptidomiméticos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/síntese química , Endopeptidases
2.
Biotechnol J ; 12(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28098428

RESUMO

P450 monooxygenases are able to catalyze the highly regio- and stereoselective oxidations of many organic molecules. However, the scale-up of such bio-oxidations remains challenging due to the often-low activity, level of expression and stability of P450 biocatalysts. Despite these challenges they are increasingly desirable as recombinant biocatalysts, particularly for the production of drug metabolites. Diclofenac is a widely used anti-inflammatory drug that is persistent in the environment along with the 4'- and 5-hydroxy metabolites. Here we have used the self-sufficient P450 RhF (CYP116B2) from Rhodococcus sp. in a whole cell system to reproducibly catalyze the highly regioselective oxidation of diclofenac to 5-hydroxydiclofenac. The product is a human metabolite and as such is an important standard for environmental and toxicological analysis. Furthermore, access to significant quantities of 5-hydroxydiclofenac has allowed us to demonstrate further oxidative degradation to the toxic quinoneimine product. Our studies demonstrate the potential for gram-scale production of human drug metabolites through recombinant whole cell biocatalysis.


Assuntos
Anti-Inflamatórios não Esteroides/química , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/análogos & derivados , Rhodococcus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biotransformação , Catálise , Sistema Enzimático do Citocromo P-450/genética , Diclofenaco/química , Fermentação , Hidroxilação , Oxirredução , Quinonas/química
3.
J Am Chem Soc ; 139(4): 1408-1411, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28084735

RESUMO

Screening of bacterial colonies to identify new biocatalytic activities is a widely adopted tool in biotechnology, but is constrained by the requirements for colorimetric or tag-based detection methods. Herein we report a label-free screening platform for biotransformations in live colonies using desorption electrospray ionization coupled with ion mobility mass spectrometry imaging (DiBT-IMMS). The screening method is demonstrated for both ammonia lyases and P450 monooxygenases expressed within live bacterial colonies and is shown to enable multiplexing of enzyme variants and substrate libraries simultaneously.


Assuntos
Amônia-Liases/metabolismo , Anabaena variabilis/enzimologia , Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Amônia-Liases/química , Biocatálise , Escherichia coli/citologia , Oxigenases de Função Mista/química , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
4.
Analyst ; 141(8): 2351-5, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26999769

RESUMO

The combination of stable isotope labelling with direct infusion ion mobility mass spectrometry (IM-MS) enabled qualitative and quantitative monitoring of biocatalytic reactions with reduced analysis times, enhanced sensitivity and µL-level assay volumes. The new approach was demonstrated by applying to both lipase and monooxygenase enzymes, including multi-substrate screening.


Assuntos
Biocatálise , Lipase/metabolismo , Espectrometria de Massas/métodos , Aminas/química , Ésteres , Pseudomonas stutzeri/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA