Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(5): 2327-2337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37648936

RESUMO

Because of their low ecological impact, plant molluscicides have garnered much attention. The work aimed to find out if Annona squamosa (AS) seed extract has a molluscicidal impact on Biomphalaria alexandrina snails and enhances this extract by adding CuO nanoparticles (NPs). Using a scanning electron microscope (SEM), transmission electron microscope (TEM), and PANalytical X'Pert PRO X-ray diffractometer (XRD), the presence of the green A. squamosa-based CuO NPs (AS-CuO NPs) was confirmed. After 24 h of exposure, the half-lethal concentration (LC50) of AS-CuO NPs was more toxic to mature B. alexandrina than the aqueous extract of AS seeds (LC50: 119.25 mg/L vs. 169.03 mg/L). The results show that snails exposed to sublethal doses of AS-CuO NPs at LC10 or LC25 (95.4 or 106.7 mg/L, respectively) had much higher glucose levels and alkaline phosphatase activity than those not exposed. Nevertheless, there was no discernible change in the protein content in general or glycogen phosphorylase production. Histological and immunohistochemical analysis showed that snails exposed to A. squamosa-derived CuO NPs LC10 had shrinking digestive tubules and degeneration as well as vacuolation of many digestive, secretory, ova, and sperm cells, with PCNA expressing positively in the hermaphrodite gland and digestive tubule cells. The toxic profile of green CuO NPs produced by A. squamosa may damage the biological activity of B. alexandrina snails; thus, this compound could be used as a molluscicidal base. Furthermore, B. alexandrina proved to be a useful biomarker of nanomaterial contamination.


Assuntos
Annona , Biomphalaria , Moluscocidas , Nanopartículas , Animais , Cobre/farmacologia , Sementes , Moluscocidas/toxicidade , Extratos Vegetais/farmacologia , Comportamento Alimentar , Óxidos
2.
Pestic Biochem Physiol ; 186: 105154, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973759

RESUMO

Organophosphorus pesticides like Chlorpyrifos 48%EC were widely used to control agricultural pests. The present study aimed to evaluate the toxic effects of Chlorpyrifos 48%EC on B. alexandrina snails, the intermediate host of Schistosoma mansoni. After exposure of snails to serial concentrations to determine the LC50, thirty snails for each sublethal concentration (LC10 2.1 and LC25 5.6 mg/l) in each group were exposed for 24 h followed by another 24 h for recovery. After recovery random samples were collected from hemolymph and tissue to measure the impacts on Phagocytic index, histological, biochemical, and molecular parameters. The current results showed a toxic effect of Chlorpyrifos 48%EC on adult B. alexandrina snails after 24 h of exposure at LC50 9.6 mg/l. After exposure to the sub-lethal concentrations of this pesticide, it decreased the total number of hemocytes and the percentage of small cells, while increased the percentage of hyalinocytes. The granulocyte percentage was increased after exposure to LC10, while after LC25, it was decreased compared to the control group. Also, the light microscopical examination showed that some granulocytes have plenty of granules, vacuoles and filopodia. Some hyalinocytes were contained shrinked nuclei, incomplete cell division and forming pseudopodia. Besides, the phagocytic index of hemocytes was significantly increased than control in all treated groups. Also, these sub-lethal concentrations increased MDA and SOD activities, while, tissue NO, GST and TAC contents were significantly decreased after exposure. Levels of Testosterone (T) and Estradiol (E) were increased significantly after exposure compared with control group. The present results showed that the concentration of DNA and RNA was highly decreased after exposure to LC10, 25 than the control group. Therefore, B. alexandrina snails could be used as a bio monitor of the chemical pollution. Besides, this pesticide could reduce the transmission of schistosomiasis as it altered the biological system of these snails.


Assuntos
Biomphalaria , Clorpirifos , Moluscocidas , Praguicidas , Animais , Biomphalaria/genética , Clorpirifos/toxicidade , Hemócitos , Moluscocidas/toxicidade , Compostos Organofosforados/farmacologia , Praguicidas/farmacologia
3.
Environ Pollut ; 307: 119507, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609841

RESUMO

Light is an important zeitgeber that regulates many behavioral and physiological processes in animals. These processes may become disturbed due to the changes in natural patterns of light and dark via the introduction of artificial light at night (ALAN). The present study was designed to determine the effect of possible consequences of ALAN on reproduction, hatching success, developmental success, growth rate, feeding rate, mortality rate, and locomotor activity of the simultaneous hermaphrodite pond snail Lymnaea stagnalis. Snails were exposed to different light intensities at night that simulate actual ALAN measurements from the snail's night environment. The data revealed that exposure to ALAN at a low level significantly affected the cumulative number of laid eggs. At the same time, snails exposed to ALAN laid smaller eggs than those laid under normal light-dark cycles. Additionally, high light-intensity of ALAN delayed development and hatching of eggs of L. stagnalis while it showed no effect on hatching percentage. Furthermore, ALAN increased both the feeding and growth rates but did not lead to mortality. The results also show that snails exposed to dark conditions at night travel longer distances and do so faster than those exposed to ALAN. In light of these findings, it is clear that ALAN may have an influence on snails and their abundance in an environment, possibly disturbing ecological stability.


Assuntos
Poluição Luminosa , Lymnaea , Animais , Locomoção , Reprodução
4.
Environ Sci Pollut Res Int ; 28(5): 5036-5048, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341922

RESUMO

Seasonal changes in the natural light condition play a pivotal role in the regulation of many biological processes in organisms. Disruption of this natural condition via the growing loss of darkness as a result of anthropogenic light pollution has been linked to species-wide shifts in behavioral and physiological traits. This review starts with a brief overview of the definition of light pollution and the most recent insights into the perception of light. We then go on to review the evidence for some adverse effects of ecological light pollution on different groups of animals and will focus on mollusks. Taken together, the available evidence suggests a critical role for light pollution as a recent, growing threat to the regulation of various biological processes in these animals, with the potential to disrupt ecosystem stability. The latter indicates that ecological light pollution is an environmental threat that needs to be taken seriously and requires further research attention.


Assuntos
Ecossistema , Poluição Ambiental , Animais , Escuridão , Moluscos
5.
Invert Neurosci ; 20(4): 18, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33078292

RESUMO

Natural light is regarded as a key regulator of biological systems and typically serves as a Zeitgeber for biological rhythms. As a natural abiotic factor, it is recognized to regulate multiple behavioral and physiological processes in animals. Disruption of the natural light regime due to light pollution may result in significant effects on animal learning and memory development. Here, we investigated whether sensitivity to various photoperiods or light intensities had an impact on intermediate-term memory (ITM) and long-term memory (LTM) formation in the pond snail Lymnaea stagnalis. We also investigated the change in the gene expression level of molluscan insulin-related peptide II (MIP II) is response to the given light treatments. The results show that the best light condition for proper LTM formation is exposure to a short day (8 h light) and low light intensity (1 and 10 lx). Moreover, the more extreme light conditions (16 h and 24 h light) prevent the formation of both ITM and LTM. We found no change in MIP II expression in any of the light treatments, which may indicate that MIP II is not directly involved in the operant conditioning used here, even though it is known to be involved in learning. The finding that snails did not learn in complete darkness indicates that light is a necessary factor for proper learning and memory formation. Furthermore, dim light enhances both ITM and LTM formation, which suggests that there is an optimum since both no light and too bright light prevented learning and memory. Our findings suggest that the upsurge of artificial day length and/or night light intensity may also negatively impact memory consolidation in the wild.


Assuntos
Aprendizagem , Lymnaea/fisiologia , Memória , Fotoperíodo , Animais , Comportamento Animal , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA