Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710245

RESUMO

A simple technique was developed for the modification of cotton materials that is inexpensive, environmentally friendly, and very effective. Waste Cotton fabrics (WCFs) are loaded with propolis extract (PE) for Cu2+ removal. Then, Cu2+ underwent a pyrolysis process with modified cuttlebone (CB) at 900 °C for 5 h. The surface of the prepared materials was characterized using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray (SEM-EDX), Fourier transform infrared (FTIR), BET, particle sizes, thermogravimetric analysis (TGA) and zeta potential analysis. The Cu2+ metal ions from an aqueous solution were removed using WCFs/PE, and DLM was subsequently removed using pyro WCFs/PE/Cu/CB. The as-prepared NPs exhibited the face-centered cubic structure of WCFs/PE/Cu/CB with crystallite sizes ranging from 386.70 to 653.10 nm. FTIR spectra revealed that CB was present on the surface of the resulting WCFs/PE/Cu. SEM revealed the dispersion of a uniformly flower-like morphology over a large area. Sorption studies were performed based on parameters that included pH, dose, contact time, and initial concentration. The adsorption isotherm and the kinetic studies of the DLM adsorption process were applied at a pH of 5.0 and a temperature of 25 °C using several isotherms and kinetic models. The results revealed qmax (20.51 mg/g) with R2 = 0.97, the Langmuir isotherm that best matches the experimental data. Hence, the Langmuir isotherm suggests that it is the model that best describes sorption on homogenous surfaces or surface-supporting sites with various affinities. The correlation coefficient R2, χ2, adjusted correlation coefficient, and error functions like root mean square (RMSE), normalized root mean square error (NRMES), and mean absolute error (MAE) were used to evaluate the best-fit models to the experimental adsorption data. Moreover, cost estimation for the prepared adsorbent WCFs/PE/Cu showed that it costs approximately 3 USD/g, which is a cheap adsorbent compared to other similar adsorbents reported in the literature. The examined WCFs/PE have significant applicability potential for Cu2+-laden wastewater treatment due to their superior Cu2+ metal ions adsorption capability and reusability. The cytotoxicity and safety study showed that at higher concentrations, it resulted in much less cell viability. Additionally, the removal efficiency of Cu2+ metal ions from synthetic, realistic industrial wastewater using WCFs/PE reached up to 96.29 %, demonstrating good adsorption capability. Thus, there is a huge possibility of accomplishing this and performing well. This study paves the way for the reuse and valorization of selected adsorbents following circular economy principles. Two green metrics were applied, the Analytical Eco-scale and the Analytical GREEnness Calculator (AGREE).


Assuntos
Cobre , Fibra de Algodão , Nanocompostos , Nitrilas , Piretrinas , Pirólise , Poluentes Químicos da Água , Cobre/química , Nanocompostos/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Nitrilas/química , Piretrinas/química , Piretrinas/isolamento & purificação , Purificação da Água/métodos , Cinética , Concentração de Íons de Hidrogênio , Própole/química
2.
Luminescence ; 39(3): e4728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516711

RESUMO

A novel spectrofluorimetric method has been developed for determination of antazoline (ANT) and tetryzoline (TET) in their pharmaceutical formulation. A combined application of synchronous spectrofluorimetry and second derivative mathematical treatment was developed. The proposed method depends on reacting the cited drugs with dansyl chloride (DNS-Cl) being a suitable derivatizing agent generating highly fluorescent derivatives measured at emission wavelengths of 703.0 and 642.0 nm after excitation wavelengths of 350.0 and 320.0 nm for ANT and TET, respectively. The joint use of synchronous spectrofluorimetry with second derivative mathematical treatment is for the first time to be developed and optimized in aid of using fluorescence data manager software generating second derivative peak amplitudes at 556.5 nm for ANT and 516.7 nm for TET. Linear responses have been represented over a wide range of concentration (0.5-12.0 µg/mL for ANT and 0.5-10.0 µg/mL for TET). Additionally, statistical comparison of the developed method with the official ones has been carried out where no significant difference was found. Additionally, greenness profile assessment was accomplished by means of four metric tools. Indeed, the method developed is found to be precise, sensitive, and discriminating to assess the cited drugs for regular analysis.


Assuntos
Antazolina , Antazolina/análise , Espectrometria de Fluorescência/métodos , Imidazóis
3.
J Fluoresc ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319520

RESUMO

A green developed spectrofluorimetric method has been applied for Antazoline (ANT) and Xylometazoline (XLO) determination in both pharmaceutical formulation and pure form. The developed method is synchronous spectrofluorimetry coupled with the second derivative mathematical tool for the determination of antazoline and xylometazoline in their dosage form. The developed method depends on reacting the cited drugs with dansyl chloride, a suitable derivatizing agent, to generate highly fluorescent derivatives. The products formed were measured at emission wavelengths; 703.0 and 712.0 nm after being excited at wavelengths; 350.0 and 355.0 nm for antazoline and xylometazoline, respectively. Synchronous spectrofluorimetry coupled with second derivative mathematical tool was developed and optimized using fluorescence data manager software generating second derivative peak amplitudes at 556.5 nm for antazoline and 598.0 nm for xylometazoline. Linear responses have been represented over a wide range of concentration 0.5-12.0 µg/mL for antazoline and 0.1-10.0 µg/mL for xylometazoline, correspondingly. Method validation was successfully applied. Additionally, statistical comparison of developed method with official ones has been carried out where no significant difference was found. Evaluation of the method's greenness was proven using several assessment tools. Indeed, the method developed is found to be precise, sensitive, and discriminating to assess the cited drugs for regular analysis.

4.
J Pharm Biomed Anal ; 235: 115598, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37516064

RESUMO

This work implements a stability indicating HPLC method developed to simultaneously determine xylometazoline (XYLO) and antazoline (ANT) in their binary mixture, rabbit aqueous humor and cited drug's degradates by applying analytical quality-by-design (AQbD) combined with green analytical chemistry (GAC) experiment for the first time. This integration was designed to maximize efficiency and minimize environmental impacts, as well as energy and solvent consumption. Analytical quality-by-design was applied to achieve our aim starting with evaluation of quality risk and scouting analysis, tracked via five parameters chromatographic screening using Placket-Burman design namely: pH, temperature, organic solvent percentage, flow rate, and wavelength detection. Recognizing the critical method parameters was done followed by optimization employing central composite design and Derringer's desirability toward assess optimum conditions that attained best resolution with satisfactory peak symmetry with short run time. Optimal chromatographic separation was attained by means of an XBridge® C18 (4.6 × 250 mm, 5 µm) column through isocratic elution using a mobile phase consists of phosphate buffer (pH 3.0): ethanol (60:40, by volume) at a 1.6 mL/min flow rate and 230.0 nm UV detection. Linearity acquired over a concentration range of 1.0-100.0 µg/mL and 0.5-100.0 µg/mL for XYLO and ANT, respectively. Furthermore, imperiling cited drugs' stock solutions to stress various conditions and satisfactory peaks of degradation products were obtained indicating that cited drugs are vulnerable to oxidative degradation and basic hydrolysis. Degradates' structures were elucidated using mass spectrometry. Applying various assessment tools; namely: analytical greenness (AGREE), green analytical procedure index (GAPI), analytical eco-scale, and national environmental method index (NEMI), Greenness method's evaluation was applied and proved to be green. In fact, the developed method is established to be perceptive, accurate, and selective to assess cited drugs for routine analysis.


Assuntos
Antazolina , Animais , Coelhos , Antazolina/análise , Soluções Oftálmicas/análise , Humor Aquoso/química , Limite de Detecção , Solventes/química , Cromatografia Líquida de Alta Pressão/métodos
5.
J Chromatogr Sci ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316161

RESUMO

Ophthalmic pharmaceutical preparation containing antazoline (ANT) and tetryzoline (TET) is prescribed widely as an over the counter medication for allergic conjunctivitis treatment. Development of a selective, simple and environmentally friendly thin-layer chromatographic method established to determine both ANT and TET in their pure forms, pharmaceutical formulation and spiked aqueous humor samples. By using silica gel plates and means of a developing system consists of ethyl acetate:ethanol (5:5, by volume), the studied drugs separation was achieved, and scanning was carried out at 220.0 nm for the separated bands with a 0.2-18.0 µg/band concentration range for each of ANT and TET. Standard addition technique application was carried out to determine the proposed method validity. Statistical comparison was made between the proposed method and the official methods ANT and TET showing no significant difference concerning accuracy and precision. Furthermore, greenness profile assessment was accomplished by means of four metric tools, namely, analytical greenness, green analytical procedure index, analytical eco-scale and national environmental method index.Highlights.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122737, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075686

RESUMO

This study presents the determination of Alcaftadine (ALF) in its oxidative degradation product presence by applying comprehensive study comparative of four different green stability indicating spectrophotometric approaches through successful exploitation of different spectrophotometric platform windows. Window I; based on absorption spectrum zero order data manipulation using the newly developed extended absorbance difference (EAD). Window II; based on derivative spectra by second order derivative (D2) data manipulation. Window III; based on ratio spectra applying constant multiplication (CM) and absorptivity centering via factorized ratio difference spectrum (ACT-FSRΔP) methods data manipulation. Finally, window IV; based on derivative of ratio spectrum by virtue of first derivative of ratio spectral (DD1) method data manipulation. Calibration curves construction were over linearity range; 1.0-14.0 µg/mL for ALF. The proposed methods accuracy, precision, and linearity range were determined and validated as per ICH guidelines. Moreover, they were able to analyze ALF in raw form, dosage form and in existence of its oxidative degradation product. Statistical comparisons were done between the proposed methods and the reported one showing no significant difference concerning accuracy and precision. Furthermore, greenness profile assessment was accomplished by means of four metric tools; namely: analytical greenness (AGREE), green analytical procedure index (GAPI), analytical eco-scale, and national environmental method index (NEMI).

7.
RSC Adv ; 13(11): 7645-7655, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36908536

RESUMO

Fabrication of a novel ion selective electrode for determining alcaftadine was achieved. The glassy carbon electrode (GCE) was utilized as a substrate in fabrication of an electrochemical sensor containing polyaniline (PANI) as an ion-to-electron transducer layer. A PVC polymeric matrix and nitrophenyl-octyl-ether were employed in designing the ion-sensing membrane (ISM). Potential stability was improved and minimization of electrical signal drift was achieved for inhibition of water layer formation at the electrode interface. Potential stability was achieved by inclusion of PANI between the electronic substrate and the ion-sensing membrane. The sensor's performance was evaluated following IUPAC recommendations. The sensor dynamic linear range was from 1.0 × 10-2 to 1.0 × 10-6 mol L-1 and it had a 6.3 × 10-7 mol L-1 detection limit. The selectivity and capabilities of the formed alcaftadine sensor were tested in the presence of its pharmaceutical formulation excipients as well as its degradation products. Additionally, the sensor was capable of quantifying the studied drug in a rabbit aqueous humor. Method's greenness profile was evaluated by the means of Analytical Greenness (AGREE) metric assessment tool.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118516, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32492634

RESUMO

Three univariate and two multivariate spectrophotometric methods were developed and subsequently validated to determine phenazopyridine HCl (PHZ) and trimethoprim (TMP) in the presence of 2,6-Diaminopyridine (2,6-DAP). The first univariate method depends on direct determination of phenazopyridine by measuring its absorbance at 412 nm and performed in concentration range of 1.00-10.00 µg/mL. Then the contribution of phenazopyridine is removed by dividing the mixture spectrum with PHZ divisor (5 µg/mL) after that the constant is mathematically subtracted and finally the generated spectrum is multiplied with the PHZ divisor. These steps eliminate PHZ contribution and the recovered spectrum is that of TMP and 2,6-DAP only where different methods can be applied to determine TMP and 2,6-DAP through this binary mixture spectrum. The first method to determine both components depends on measuring both TMP and 2,6-DAP through their first derivative (1DD) spectra at 244.70 and 259.60 nm for TMP and 2,6-DAP, respectively with concentration ranges of 4.00-24.00 µg/mL TMP and 4.00-26.00 µg/mL 2,6-DAP. The second method depends on application of the isoabsorptive method which was used for TMP determination at its isoabsorptive point with 2,6-DAP at 242.64 nm with concentration range 1.00-20.00 µg/mL for TMP. The developed univariate methods were successfully applied to determine PHZ, TMP and PHZ impurity (2,6-DAP). Two multivariate methods were applied for determination of PHZ and TMP in presence of 2,6-DAP namely, Principle Component Regression (PCR) and Partial Least Squares (PLS). The results of the two models show that simultaneous determination of PHZ and TMP in presence of PHZ impurity can be performed in the concentration ranges of 6.00-14.00 µg/mL PHZ and 24.00-56.00 µg/mL TMP. All the proposed methods were successfully applied to analyze PHZ and TMP in pharmaceutical formulations without interference from the dosage form additives and the results were statistically compared with the reported method.


Assuntos
Fenazopiridina , Trimetoprima , Análise dos Mínimos Quadrados , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA