Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 145(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338238

RESUMO

Classical models for the passive myocardium, such as the Fung and Holzapfel-Ogden models, are known to have high degeneracy as well as numerous mechanical and mathematical limitations, preventing their utility in microstructural experiments and precision medicine. Hence, the upper triangular (QR) decomposition and orthogonal strain attributes were leveraged to develop a new model using published biaxial data on slabs of left myocardium, resulting in a separable strain energy function. This new model, the Criscione-Hussein model, was compared with both the Fung and Holzapfel-Ogden models by quantifying the uncertainty, computational efficiency, and material parameter fidelity for all three models. As a result, the Criscione-Hussein model was found to significantly reduce the uncertainty and computational time (p < 0.05) and enhance the fidelity of the material parameters. Hence, the Criscione-Hussein model enhances the predictability for the passive behavior of the myocardium and may serve a role in creating more accurate computational models that provide better visualizations for the mechanical behavior of the heart and enable the experimental connection between the model and the myocardial microstructure.


Assuntos
Coração , Miocárdio , Estresse Mecânico , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA