Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Genomics ; 15: 1154, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25528190

RESUMO

BACKGROUND: The human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often used as a cellular model for Parkinson's disease, the relevance of this cellular model in the context of Parkinson's disease (PD) and other neurodegenerative diseases has not yet been systematically evaluated. RESULTS: We have used a systems genomics approach to characterize the SH-SY5Y cell line using whole-genome sequencing to determine the genetic content of the cell line and used transcriptomics and proteomics data to determine molecular correlations. Further, we integrated genomic variants using a network analysis approach to evaluate the suitability of the SH-SY5Y cell line for perturbation experiments in the context of neurodegenerative diseases, including PD. CONCLUSIONS: The systems genomics approach showed consistency across different biological levels (DNA, RNA and protein concentrations). Most of the genes belonging to the major Parkinson's disease pathways and modules were intact in the SH-SY5Y genome. Specifically, each analysed gene related to PD has at least one intact copy in SH-SY5Y. The disease-specific network analysis approach ranked the genetic integrity of SH-SY5Y as higher for PD than for Alzheimer's disease but lower than for Huntington's disease and Amyotrophic Lateral Sclerosis for loss of function perturbation experiments.


Assuntos
Genômica , Neuroblastoma/patologia , Doença de Parkinson/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Variação Genética , Humanos , Mutação INDEL , Proteômica
2.
BMC Bioinformatics ; 13: 291, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23137144

RESUMO

BACKGROUND: The robust identification of isotope patterns originating from peptides being analyzed through mass spectrometry (MS) is often significantly hampered by noise artifacts and the interference of overlapping patterns arising e.g. from post-translational modifications. As the classification of the recorded data points into either 'noise' or 'signal' lies at the very root of essentially every proteomic application, the quality of the automated processing of mass spectra can significantly influence the way the data might be interpreted within a given biological context. RESULTS: We propose non-negative least squares/non-negative least absolute deviation regression to fit a raw spectrum by templates imitating isotope patterns. In a carefully designed validation scheme, we show that the method exhibits excellent performance in pattern picking. It is demonstrated that the method is able to disentangle complicated overlaps of patterns. CONCLUSIONS: We find that regularization is not necessary to prevent overfitting and that thresholding is an effective and user-friendly way to perform feature selection. The proposed method avoids problems inherent in regularization-based approaches, comes with a set of well-interpretable parameters whose default configuration is shown to generalize well without the need for fine-tuning, and is applicable to spectra of different platforms. The R package IPPD implements the method and is available from the Bioconductor platform (http://bioconductor.fhcrc.org/help/bioc-views/devel/bioc/html/IPPD.html).


Assuntos
Isótopos/química , Espectrometria de Massas/métodos , Peptídeos/química , Proteômica/métodos , Algoritmos , Artefatos , Humanos , Isótopos/análise , Análise dos Mínimos Quadrados , Peptídeos/análise , Processamento de Proteína Pós-Traducional
3.
Methods Mol Biol ; 604: 145-61, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20013370

RESUMO

Computational proteomics applications are often imagined as a pipeline, where information is processed in each stage before it flows to the next one. Independent of the type of application, the first stage invariably consists of obtaining the raw mass spectrometric data from the spectrometer and preparing it for use in the later stages by enhancing the signal of interest while suppressing spurious components. Numerous approaches for preprocessing MS data have been described in the literature. In this chapter, we will describe both, standard techniques originating from classical signal and image processing, and novel computational approaches specifically tailored to the analysis of MS data sets. We will focus on low level signal processing tasks such as baseline reduction, denoising, and feature detection.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Processamento de Sinais Assistido por Computador
4.
Bioinformatics ; 25(15): 1937-43, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19447788

RESUMO

MOTIVATION: Mass spectrometry (MS) is one of the most important techniques for high-throughput analysis in proteomics research. Due to the large number of different proteins and their post-translationally modified variants, the amount of data generated by a single wet-lab MS experiment can easily exceed several gigabytes. Hence, the time necessary to analyze and interpret the measured data is often significantly larger than the time spent on sample preparation and the wet-lab experiment itself. Since the automated analysis of this data is hampered by noise and baseline artifacts, more sophisticated computational techniques are required to handle the recorded mass spectra. Obviously, there is a clear tradeoff between performance and quality of the analysis, which is currently one of the most challenging problems in computational proteomics. RESULTS: Using modern graphics processing units (GPUs), we implemented a feature finding algorithm based on a hand-tailored adaptive wavelet transform that drastically reduces the computation time. A further speedup can be achieved exploiting the multi-core architecture of current computing devices, which leads to up to an approximately 200-fold speed-up in our computational experiments. In addition, we will demonstrate that several approximations necessary on the CPU to keep run times bearable, become obsolete on the GPU, yielding not only faster, but also improved results. AVAILABILITY: An open source implementation of the CUDA-based algorithm is available via the software framework OpenMS (http://www.openms.de). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Gráficos por Computador , Proteoma/química , Proteômica/métodos , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Reconhecimento Automatizado de Padrão
5.
J Comput Biol ; 15(7): 685-704, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18707556

RESUMO

Liquid chromatography coupled to mass spectrometry (LC-MS) has become a major tool for the study of biological processes. High-throughput LC-MS experiments are frequently conducted in modern laboratories, generating an enormous amount of data per day. A manual inspection is therefore no longer a feasible task. Consequently, there is a need for computational tools that can rapidly provide information about mass, elution time, and abundance of the compounds in a LC-MS sample. We present an algorithm for the detection and quantification of peptides in LC-MS data. Our approach is flexible and independent of the MS technology in use. It is based on a combination of the sweep line paradigm with a novel wavelet function tailored to detect isotopic patterns of peptides. We propose a simple voting schema to use the redundant information in consecutive scans for an accurate determination of monoisotopic masses and charge states. By explicitly modeling the instrument inaccuracy, we are also able to cope with data sets of different quality and resolution. We evaluate our technique on data from different instruments and show that we can rapidly estimate mass, centroid of retention time, and abundance of peptides in a sound algorithmic framework. Finally, we compare the performance of our method to several other techniques on three data sets of varying complexity.


Assuntos
Algoritmos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Animais , Halobacterium/química , Humanos , Mioglobina/química , Análise de Regressão , Software
6.
BMC Bioinformatics ; 9: 163, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18366760

RESUMO

BACKGROUND: Mass spectrometry is an essential analytical technique for high-throughput analysis in proteomics and metabolomics. The development of new separation techniques, precise mass analyzers and experimental protocols is a very active field of research. This leads to more complex experimental setups yielding ever increasing amounts of data. Consequently, analysis of the data is currently often the bottleneck for experimental studies. Although software tools for many data analysis tasks are available today, they are often hard to combine with each other or not flexible enough to allow for rapid prototyping of a new analysis workflow. RESULTS: We present OpenMS, a software framework for rapid application development in mass spectrometry. OpenMS has been designed to be portable, easy-to-use and robust while offering a rich functionality ranging from basic data structures to sophisticated algorithms for data analysis. This has already been demonstrated in several studies. CONCLUSION: OpenMS is available under the Lesser GNU Public License (LGPL) from the project website at http://www.openms.de.


Assuntos
Algoritmos , Espectrometria de Massas/métodos , Linguagens de Programação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA