Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 446: 138769, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422636

RESUMO

Chaya (Cnidoscolus chayamansa) leaves are known for their strong umami taste and widespread use as a dried seasoning. This study aimed to assess the impact of different drying methods [freeze drying (FD), vacuum drying, oven drying at 50 °C and 120 °C (OD120) and pan roasting (PR)] on the metabolome using mass spectrometry, umami intensity, and antioxidant properties of chaya leaves. The predominant volatile compound among all samples, 3-methylbutanal, exhibited the highest relative odor activity value (rOAV), imparting a malt-like odor, while hexanal (green grass-like odor) and 2-methylbutanal (coffee-like odor) are the second highest rOAV in the FD and PR samples, respectively. OD120 and PR samples possessed the highest levels of umami-tasting amino acids and 5'-ribonucleotides as well as the most intense umami taste, whereas FD samples exhibited the highest antioxidant capacity. These findings enhance our understanding of the aroma characteristics, umami taste, and antioxidant potential of processed chaya leaves.


Assuntos
Antioxidantes , Paladar , Antioxidantes/química , Odorantes/análise , Percepção Gustatória
2.
Food Chem ; 404(Pt A): 134564, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444036

RESUMO

Chaya (Cnidoscolus chayamansa and C. aconitifolius) is a fast-growing medicinal plant, and its leaves exhibit a strong umami taste. Here metabolite variation and umami-related compounds in the leaves of two chaya species were determined using a multiplatform untargeted-metabolomics approach, electronic tongue, and in silico screening. Metabolite profiles varied between the leaves of the two species and among leaf maturation stages. Young leaves exhibited the highest umami taste intensity, followed by mature and old leaves. Partial least square regression and computational molecular docking analyses revealed five potent umami substances (quinic acid, trigonelline, alanyl-tyrosine, leucyl-glycyl-proline, and leucyl-aspartyl-glutamine) and three known umami compounds (l-glutamic acid, pyroglutamic acid, and 5'-adenosine monophosphate). The five substances were validated as novel umami compounds using electronic tongue assay; leucyl-glycyl-proline exhibited synergism with monosodium glutamate, thereby enhancing the umami taste. Thus, substances contributing to the taste of chaya leaves were successfully identified.


Assuntos
Metabolômica , Folhas de Planta , Simulação de Acoplamento Molecular , Nariz Eletrônico , Prolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA