Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 115(16): 3249-57, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20194894

RESUMO

The guanosine triphosphatases (GTPases) of the immunity-associated protein (GIMAP) family of putative GTPases has been implicated in the regulation of T-lymphocyte development and survival. A mouse conditional knockout allele was generated for the immune GTPase gene GIMAP1. Homozygous loss of this allele under the influence of the lymphoid-expressed hCD2-iCre recombinase transgene led to severe (> 85%) deficiency of mature T lymphocytes and, unexpectedly, of mature B lymphocytes. By contrast there was little effect of GIMAP1 deletion on immature lymphocytes in either B or T lineages, although in vitro studies showed a shortening of the survival time of both immature and mature CD4(+) single-positive thymocytes. These findings show a vital requirement for GIMAP1 in mature lymphocyte development/survival and draw attention to the nonredundant roles of members of the GIMAP GTPase family in these processes.


Assuntos
Linfócitos B/citologia , Diferenciação Celular/imunologia , GTP Fosfo-Hidrolases/metabolismo , Linfócitos T/citologia , Animais , Western Blotting , Separação Celular , Sobrevivência Celular , Citometria de Fluxo , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Transdução de Sinais/imunologia
2.
Self Nonself ; 1(3): 259-268, 2010 07.
Artigo em Inglês | MEDLINE | ID: mdl-21487483

RESUMO

A mutation in the rat GIMAP5 gene predisposes for autoimmunity, most famously in the BB rat model of autoimmune type 1 diabetes mellitus. This mutation is associated with severe peripheral T lymphopenia, as is mutation of the same gene in mice, but the mechanism by which GIMAP5 normally protects T cells from death is unknown. GIMAP5 is a putative small GTPase, a class of proteins which often fulfil their functions in the vicinity of cellular membranes. The objective of this study was to determine the normal intracellular location of GIMAP5 in lymphoid cells. Combining studies in rat, mouse and human systems, novel monoclonal antibodies (mAbs) were used to examine the localization of GIMAP5 and the closely-related protein, GIMAP1, in lymphoid cells by means of confocal microscopy and sub-cellular fractionation combined with immunoblotting. Additionally, human Jurkat T cells that inducibly express epitope-tagged GIMAP5 were established and used in electron microscopy (EM). Endogenous GIMAP5 was found to be located in a membraneous compartment/s which was also detected by established markers of lysosomes. GIMAP1, by contrast, was found to be located in the Golgi apparatus. EM studies of the inducible Jurkat T cells also found GIMAP5 in lysosomes and, in addition, in multivesicular bodies. This study establishes that the endogenous location of GIMAP5 is in lysosomes and related compartments and provides a clearer context for hypotheses about its mechanism of action.

3.
Blood ; 115(2): 282-8, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19822901

RESUMO

Russell bodies (RBs) are intracellular inclusions filled with protein aggregates. In diverse lymphoid disorders these occur as immunoglobulin (Ig) deposits, accumulating in abnormal plasma or Mott cells. In heavy-chain deposition disease truncated antibody heavy-chains (HCs) are found, which bear a resemblance to diverse polypeptides produced in Ig light-chain (LC)-deficient (L(-/-)) mice. In L(-/-) animals, the known functions of LC, providing part of the antigen-binding site of an antibody and securing progression of B-cell development, may not be required. Here, we show a novel function of LC in preventing antibody aggregation. L(-/-) mice produce truncated HC naturally, constant region (C)gamma and Calpha lack C(H)1, and Cmicro is without C(H)1 or C(H)1 and C(H)2. Most plasma cells found in these mice are CD138(+) Mott cells, filled with RBs, formed by aggregation of HCs of different isotypes. The importance of LC in preventing HC aggregation is evident in knock-in mice, expressing Cmicro without C(H)1 and C(H)2, which only develop an abundance of RBs when LC is absent. These results reveal that preventing antibody aggregation is a major function of LC, important for understanding the physiology of heavy-chain deposition disease, and in general recognizing the mechanisms, which initiate protein conformational diseases.


Assuntos
Regiões Constantes de Imunoglobulina/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Corpos de Inclusão/metabolismo , Plasmócitos/metabolismo , Animais , Técnicas de Introdução de Genes , Regiões Constantes de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Corpos de Inclusão/genética , Camundongos , Camundongos Knockout , Plasmócitos/patologia , Sindecana-1/genética , Sindecana-1/metabolismo
4.
Malar J ; 8: 53, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19338674

RESUMO

BACKGROUND: GIMAP (GTPase of the immunity-associated protein family) proteins are a family of putative GTPases believed to be regulators of cell death in lymphomyeloid cells. GIMAP1 was the first reported member of this gene family, identified as a gene up-regulated at the RNA level in the spleens of mice infected with the malarial parasite, Plasmodium chabaudi. METHODS: A monoclonal antibody against mouse GIMAP1 was developed and was used to analyse the expression of the endogenous protein in tissues of normal mice and in defined sub-populations of cells prepared from lymphoid tissues using flow cytometry. It was also used to assess the expression of GIMAP1 protein after infection and/or immunization of mice with P. chabaudi. Real-time PCR analysis was employed to measure the expression of GIMAP1 for comparison with the protein level analysis. RESULTS: GIMAP1 protein expression was detected in all lineages of lymphocytes (T, B, NK), in F4/80+ splenic macrophages and in some lymphoid cell lines. Additional evidence is presented suggesting that the strong expression by mature B cells of GIMAP1 and other GIMAP genes and proteins seen in mice may be a species-dependent characteristic. Unexpectedly, no increase was found in the expression of GIMAP1 in P. chabaudi infected mice at either the mRNA or protein level, and this remained so despite applying a number of variations to the protocol. CONCLUSION: The model of up-regulation of GIMAP1 in response to infection/immunization with P. chabaudi is not a robustly reproducible experimental system. The GIMAP1 protein is widely expressed in lymphoid cells, with an interesting increase in expression in the later stages of B cell development. Alternative approaches will be required to define the functional role of this GTPase in immune cells.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Malária/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium chabaudi/imunologia , Baço/metabolismo , Regulação para Cima , Animais , Anticorpos Monoclonais , Western Blotting , Linhagem Celular , Citometria de Fluxo , GTP Fosfo-Hidrolases/metabolismo , Linfócitos/metabolismo , Malária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Baço/citologia
5.
J Exp Med ; 204(13): 3271-83, 2007 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-18086860

RESUMO

In healthy mammals, maturation of B cells expressing heavy (H) chain immunoglobulin (Ig) without light (L) chain is prevented by chaperone association of the H chain in the endoplasmic reticulum. Camelids are an exception, expressing homodimeric IgGs, an antibody type that to date has not been found in mice or humans. In camelids, immunization with viral epitopes generates high affinity H chain-only antibodies, which, because of their smaller size, recognize clefts and protrusions not readily distinguished by typical antibodies. Developmental processes leading to H chain antibody expression are unknown. We show that L(-/-) (kappa(-/-)lambda(-/-)-deficient) mice, in which conventional B cell development is blocked at the immature B cell stage, produce diverse H chain-only antibodies in serum. The generation of H chain-only IgG is caused by the loss of constant (C) gamma exon 1, which is accomplished by genomic alterations in C(H)1-circumventing chaperone association. These mutations can be attributed to errors in class switch recombination, which facilitate the generation of H chain-only Ig-secreting plasma cells. Surprisingly, transcripts with a similar deletion can be found in normal mice. Thus, naturally occurring H chain transcripts without C(H)1 (V(H)DJ(H)-hinge-C(H)2-C(H)3) are selected for and lead to the formation of fully functional and diverse H chain-only antibodies in L(-/-) animals.


Assuntos
Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Alelos , Animais , Anticorpos/química , Western Blotting , Linhagem Celular , DNA/metabolismo , Citometria de Fluxo , Genes de Imunoglobulinas , Sistema Imunitário , Hibridização in Situ Fluorescente , Camundongos , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Immunol ; 179(3): 1784-95, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17641045

RESUMO

The Gimap/IAN family of GTPases has been implicated in the regulation of cell survival, particularly in lymphomyeloid cells. Prosurvival and prodeath properties have been described for different family members. We generated novel serological reagents to study the expression in rats of the prodeath family member Gimap4 (IAN1), which is sharply up-regulated at or soon after the stage of T cell-positive selection in the thymus. During these investigations we were surprised to discover a severe deficiency of Gimap4 expression in the inbred Brown Norway (BN) rat. Genetic analysis linked this trait to the Gimap gene cluster on rat chromosome 4, the probable cause being an AT dinucleotide insertion in the BN Gimap4 allele (AT(+)). This allele encodes a truncated form of Gimap4 that is missing 21 carboxyl-terminal residues relative to wild type. The low protein expression associated with this allele appears to have a posttranscriptional cause, because mRNA expression was apparently normal. Spontaneous and induced apoptosis of BN and wild-type T cells was analyzed in vitro and compared with the recently described mouse Gimap4 knockout. This revealed a "delayed" apoptosis phenotype similar to but less marked than that of the knockout. The Gimap4 AT(+) allele found in BN was shown to be rare in inbred rat strains. Nevertheless, when wild rat DNA samples were studied the AT(+) allele was found at a high overall frequency ( approximately 30%). This suggests an adaptive significance for this hypomorphic allele.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao GTP/genética , Variação Genética , Alelos , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/fisiologia , Sequência de Bases , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Família Multigênica , Mutagênese Insercional , Ratos , Ratos Endogâmicos BB , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Ratos Endogâmicos WKY
7.
Biochem J ; 371(Pt 3): 811-21, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12558500

RESUMO

The indirect flight muscles (IFMs) of Lethocerus (giant water bug) and Drosophila (fruitfly) are asynchronous: oscillatory contractions are produced by periodic stretches in the presence of a Ca(2+) concentration that does not fully activate the muscle. The troponin complex on thin filaments regulates contraction in striated muscle. The complex in IFM has subunits that are specific to this muscle type, and stretch activation may act through troponin. Lethocerus and Drosophila have an unusual isoform of the Ca(2+)-binding subunit of troponin, troponin C (TnC), with a single Ca(2+)-binding site near the C-terminus (domain IV); this isoform is only in IFMs, together with a minor isoform with an additional Ca(2+)-binding site in the N-terminal region (domain II). Lethocerus has another TnC isoform in leg muscle which also has two Ca(2+)-binding sites. Ca(2+) binds more strongly to domain IV than to domain II in two-site isoforms. There are four isoforms in Drosophila and Anopheles (malarial mosquito), three of which are also in adult Lethocerus. A larval isoform has not been identified in Lethocerus. Different TnC isoforms are expressed in the embryonic, larval, pupal and adult stages of Drosophila; the expression of the two IFM isoforms is increased in the pupal stage. Immunoelectron microscopy shows the distribution of the major IFM isoform with one Ca(2+)-binding site is uniform along Lethocerus thin filaments. We suggest that initial activation of IFM is by Ca(2+) binding to troponin with the two-site TnC, and full activation is through the action of stretch on the complex with the one-site isoform.


Assuntos
Músculos/metabolismo , Troponina C/metabolismo , Sequência de Aminoácidos , Animais , Anopheles , Sequência de Bases , Cálcio/metabolismo , Primers do DNA , Drosophila , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Troponina C/química , Troponina C/genética
8.
J Struct Biol ; 138(3): 187-98, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12217657

RESUMO

Atomic force microscopy has been used to investigate changes in the plasma membrane overlying the head region of mammalian spermatozoa (bull, boar, ram, goat, stallion, mouse, and monkey) during post-testicular development, after ejaculation, and after exocytosis of the acrosomal vesicle. On ejaculated ram, bull, boar, and goat spermatozoa the postacrosomal plasma membrane has a more irregular surface than that covering the acrosome. The equatorial segment, by contrast, is relatively smooth except for an unusual semicircular substructure within it that has a coarse uneven appearance. This substructure (referred to as the equatorial subsegment) is situated adjacent to the boundary between the postacrosomal region and the equatorial segment itself and seems to be confined to the order Artiodactyla as it has not been observed on stallion, mouse, or monkey spermatozoa. The equatorial subsegment develops during epididymal maturation, and following induction of the acrosome reaction with Ca(2+) ionophore A23187, its topography changes from a finely ridged appearance to that resembling truncated papillae. A monoclonal antibody to the equatorial subsegment binds only to permeabilized spermatozoa, suggesting that the subsegment is related to the underlying perinuclear theca that surrounds the sperm nucleus. A role for the equatorial subsegment in mediating fusion with the oolemma at fertilization is discussed.


Assuntos
Acrossomo/metabolismo , Membrana Celular/metabolismo , Espermatozoides/metabolismo , Testículo/embriologia , Acrossomo/ultraestrutura , Reação Acrossômica , Animais , Anticorpos Monoclonais/metabolismo , Western Blotting , Cálcio/metabolismo , Bovinos , Membrana Celular/ultraestrutura , Epididimo , Fertilização , Técnica Indireta de Fluorescência para Anticorpo , Cabras , Ionóforos/farmacologia , Masculino , Camundongos , Microscopia de Força Atômica , Microscopia de Fluorescência , Fotodegradação , Ovinos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA