Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
BJOG ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956748

RESUMO

OBJECTIVE: To utilise combined diffusion-relaxation MRI techniques to interrogate antenatal changes in the placenta prior to extreme preterm birth among both women with PPROM and membranes intact, and compare this to a control group who subsequently delivered at term. DESIGN: Observational study. SETTING: Tertiary Obstetric Unit, London, UK. POPULATION: Cases: pregnant women who subsequently spontaneously delivered a singleton pregnancy prior to 32 weeks' gestation without any other obstetric complications. CONTROLS: pregnant women who delivered an uncomplicated pregnancy at term. METHODS: All women consented to an MRI examination. A combined diffusion-relaxation MRI of the placenta was undertaken and analysed using fractional anisotropy, a combined T2*-apparent diffusion coefficient model and a combined T2*-intravoxel incoherent motion model, in order to provide a detailed placental phenotype associated with preterm birth. Subgroup analyses based on whether women in the case group had PPROM or intact membranes at time of scan, and on latency to delivery were performed. MAIN OUTCOME MEASURES: Fractional anisotropy, apparent diffusion coefficients and T2* placental values, from two models including a combined T2*-IVIM model separating fast- and slow-flowing (perfusing and diffusing) compartments. RESULTS: This study included 23 women who delivered preterm and 52 women who delivered at term. Placental T2* was lower in the T2*-apparent diffusion coefficient model (p < 0.001) and in the fast- and slow-flowing compartments (p = 0.001 and p < 0.001) of the T2*-IVIM model. This reached a higher level of significance in the preterm prelabour rupture of the membranes group than in the membranes intact group. There was a reduced perfusion fraction among the cases with impending delivery. CONCLUSIONS: Placental diffusion-relaxation reveals significant changes in the placenta prior to preterm birth with greater effect noted in cases of preterm prelabour rupture of the membranes. Application of this technique may allow clinically valuable interrogation of histopathological changes before preterm birth. In turn, this could facilitate more accurate antenatal prediction of preterm chorioamnionitis and so aid decisions around the safest time of delivery. Furthermore, this technique provides a research tool to improve understanding of the pathological mechanisms associated with preterm birth in vivo.

2.
Magn Reson Med ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968093

RESUMO

PURPOSE: T1 mapping and T1-weighted contrasts have a complimentary but currently under utilized role in fetal MRI. Emerging clinical low field scanners are ideally suited for fetal T1 mapping. The advantages are lower T1 values which results in higher efficiency and reduced field inhomogeneities resulting in a decreased requirement for specialist tools. In addition the increased bore size associated with low field scanners provides improved patient comfort and accessibility. This study aims to demonstrate the feasibility of fetal brain T1 mapping at 0.55T. METHODS: An efficient slice-shuffling inversion-recovery echo-planar imaging (EPI)-based T1-mapping and postprocessing was demonstrated for the fetal brain at 0.55T in a cohort of 38 fetal MRI scans. Robustness analysis was performed and placental measurements were taken for validation. RESULTS: High-quality T1 maps allowing the investigation of subregions in the brain were obtained and significant correlation with gestational age was demonstrated for fetal brain T1 maps ( p < 0 . 05 $$ p<0.05 $$ ) as well as regions-of-interest in the deep gray matter and white matter. CONCLUSIONS: Efficient, quantitative T1 mapping in the fetal brain was demonstrated on a clinical 0.55T MRI scanner, providing foundations for both future research and clinical applications including low-field specific T1-weighted acquisitions.

3.
J Magn Reson Imaging ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994701

RESUMO

BACKGROUND: Congenital heart disease (CHD) has been linked to impaired placental and fetal brain development. Assessing the placenta and fetal brain in parallel may help further our understanding of the relationship between development of these organs. HYPOTHESIS: 1) Placental and fetal brain oxygenation are correlated, 2) oxygenation in these organs is reduced in CHD compared to healthy controls, and 3) placental structure is altered in CHD. STUDY TYPE: Retrospective case-control. POPULATION: Fifty-one human fetuses with CHD (32 male; median [IQR] gestational age [GA] = 32.0 [30.9-32.9] weeks) and 30 from uncomplicated pregnancies with normal birth outcomes (18 male; median [IQR] GA = 34.5 [31.9-36.7] weeks). FIELD STRENGTH/SEQUENCE: 1.5 T single-shot multi-echo-gradient-echo echo-planar imaging. ASSESSMENT: Masking was performed using an automated nnUnet model. Mean brain and placental T2* and quantitative measures of placental texture, volume, and morphology were calculated. STATISTICAL TESTS: Spearman's correlation coefficient for determining the association between brain and placental T2*, and between brain and placental characteristics with GA. P-values for comparing brain T2*, placenta T2*, and placental characteristics between groups derived from ANOVA. Significance level P < 0.05. RESULTS: There was a significant positive association between placental and fetal brain T2* (⍴ = 0.46). Placental and fetal brain T2* showed a significant negative correlation with GA (placental T2* ⍴ = -0.65; fetal brain T2* ⍴ = -0.32). Both placental and fetal brain T2* values were significantly reduced in CHD, after adjusting for GA (placental T2*: control = 97 [±24] msec, CHD = 83 [±23] msec; brain T2*: control = 218 [±26] msec, CHD = 202 [±25] msec). Placental texture and morphology were also significantly altered in CHD (Texture: control = 0.84 [0.83-0.87], CHD = 0.80 [0.78-0.84]; Morphology: control = 9.9 [±2.2], CHD = 10.8 [±2.0]). For all fetuses, there was a significant positive association between placental T2* and placental texture (⍴ = 0.46). CONCLUSION: Placental and fetal brain T2* values are associated in healthy fetuses and those with CHD. Placental and fetal brain oxygenation are reduced in CHD. Placental appearance is significantly altered in CHD and shows associations with placental oxygenation, suggesting altered placental development and function may be related. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.

4.
Early Hum Dev ; 194: 106047, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851106

RESUMO

BACKGROUND: Neonatal chest-Xray (CXR)s are commonly performed as a first line investigation for the evaluation of respiratory complications. Although lung area derived from CXRs correlates well with functional assessments of the neonatal lung, it is not currently utilised in clinical practice, partly due to the lack of reference ranges for CXR-derived lung area in healthy neonates. Advanced MR techniques now enable direct evaluation of both fetal pulmonary volume and area. This study therefore aims to generate reference ranges for pulmonary volume and area in uncomplicated pregnancies, evaluate the correlation between prenatal pulmonary volume and area, as well as to assess the agreement between antenatal MRI-derived and neonatal CXR-derived pulmonary area in a cohort of fetuses that delivered shortly after the antenatal MRI investigation. METHODS: Fetal MRI datasets were retrospectively analysed from uncomplicated term pregnancies and a preterm cohort that delivered within 72 h of the fetal MRI. All examinations included T2 weighted single-shot turbo spin echo images in multiple planes. In-house pipelines were applied to correct for fetal motion using deformable slice-to-volume reconstruction. An MRI-derived lung area was manually segmented from the average intensity projection (AIP) images generated. Postnatal lung area in the preterm cohort was measured from neonatal CXRs within 24 h of delivery. Pearson correlation coefficient was used to correlate MRI-derived lung volume and area. A two-way absolute agreement was performed between the MRI-derived AIP lung area and CXR-derived lung area. RESULTS: Datasets from 180 controls and 10 preterm fetuses were suitable for analysis. Mean gestational age at MRI was 28.6 ± 4.2 weeks for controls and 28.7 ± 2.7 weeks for preterm neonates. MRI-derived lung area correlated strongly with lung volumes (p < 0.001). MRI-derived lung area had good agreement with the neonatal CXR-derived lung area in the preterm cohort [both lungs = 0.982]. CONCLUSION: MRI-derived pulmonary area correlates well with absolute pulmonary volume and there is good correlation between MRI-derived pulmonary area and postnatal CXR-derived lung area when delivery occurs within a few days of the MRI examination. This may indicate that fetal MRI derived lung area may prove to be useful reference ranges for pulmonary areas derived from CXRs obtained in the perinatal period.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Humanos , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Imageamento por Ressonância Magnética/métodos , Feminino , Gravidez , Recém-Nascido , Medidas de Volume Pulmonar/métodos , Estudos Retrospectivos
5.
Fetal Diagn Ther ; : 1-13, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857593

RESUMO

INTRODUCTION: Spontaneous preterm birth complicates ∼7% of pregnancies and causes morbidity and mortality. Although infection is a common etiology, our understanding of the fetal immune system in vivo is limited. This study aimed to utilize T2-weighted imaging and T2* relaxometry (which is a proxy of tissue oxygenation) of the fetal spleen in uncomplicated pregnancies and in fetuses that were subsequently delivered spontaneously prior to 32 weeks. METHODS: Women underwent imaging including T2-weighted fetal body images and multi-eco gradient echo single-shot echo planar sequences on a Phillips Achieva 3T system. Previously described postprocessing techniques were applied to obtain T2- and T2*-weighted imaging of the fetal spleen and T2-weighted fetal body volumes. RESULTS: Among 55 women with uncomplicated pregnancies, an increase in fetal splenic volume, splenic:body volume, and a decrease in splenic T2* signal intensity was demonstrated across gestation. Compared to controls, fetuses who were subsequently delivered prior to 32 weeks' gestation (n = 19) had a larger spleen when controlled for the overall size of the fetus (p = 0.027), but T2* was consistent (p = 0.76). CONCLUSION: These findings provide evidence of a replicable method of studying the fetal immune system and give novel results on the impact of impending preterm birth on the spleen. While T2* decreases prior to preterm birth in other organs, preservation demonstrated here suggests preferential sparing of the spleen.

6.
Sci Rep ; 14(1): 12357, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811636

RESUMO

Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR < 0.001), with changes most evident after 30 weeks gestation. A significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR = 0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.


Assuntos
Cardiopatias Congênitas , Imageamento por Ressonância Magnética , Placenta , Placentação , Humanos , Feminino , Gravidez , Cardiopatias Congênitas/diagnóstico por imagem , Adulto , Placenta/diagnóstico por imagem , Placenta/patologia , Imageamento por Ressonância Magnética/métodos , Estudos de Casos e Controles
7.
Magn Reson Med ; 92(3): 1263-1276, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38650351

RESUMO

PURPOSE: Widening the availability of fetal MRI with fully automatic real-time planning of radiological brain planes on 0.55T MRI. METHODS: Deep learning-based detection of key brain landmarks on a whole-uterus echo planar imaging scan enables the subsequent fully automatic planning of the radiological single-shot Turbo Spin Echo acquisitions. The landmark detection pipeline was trained on over 120 datasets from varying field strength, echo times, and resolutions and quantitatively evaluated. The entire automatic planning solution was tested prospectively in nine fetal subjects between 20 and 37 weeks. A comprehensive evaluation of all steps, the distance between manual and automatic landmarks, the planning quality, and the resulting image quality was conducted. RESULTS: Prospective automatic planning was performed in real-time without latency in all subjects. The landmark detection accuracy was 4.2 ± $$ \pm $$ 2.6 mm for the fetal eyes and 6.5 ± $$ \pm $$ 3.2 for the cerebellum, planning quality was 2.4/3 (compared to 2.6/3 for manual planning) and diagnostic image quality was 2.2 compared to 2.1 for manual planning. CONCLUSIONS: Real-time automatic planning of all three key fetal brain planes was successfully achieved and will pave the way toward simplifying the acquisition of fetal MRI thereby widening the availability of this modality in nonspecialist centers.


Assuntos
Encéfalo , Feto , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Imageamento por Ressonância Magnética/métodos , Feminino , Gravidez , Feto/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Diagnóstico Pré-Natal/métodos , Estudos Prospectivos , Imagem Ecoplanar/métodos , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos
8.
BMC Med Imaging ; 24(1): 52, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429666

RESUMO

This study explores the potential of 3D Slice-to-Volume Registration (SVR) motion-corrected fetal MRI for craniofacial assessment, traditionally used only for fetal brain analysis. In addition, we present the first description of an automated pipeline based on 3D Attention UNet trained for 3D fetal MRI craniofacial segmentation, followed by surface refinement. Results of 3D printing of selected models are also presented.Qualitative analysis of multiplanar volumes, based on the SVR output and surface segmentations outputs, were assessed with computer and printed models, using standardised protocols that we developed for evaluating image quality and visibility of diagnostic craniofacial features. A test set of 25, postnatally confirmed, Trisomy 21 fetal cases (24-36 weeks gestational age), revealed that 3D reconstructed T2 SVR images provided 66-100% visibility of relevant craniofacial and head structures in the SVR output, and 20-100% and 60-90% anatomical visibility was seen for the baseline and refined 3D computer surface model outputs respectively. Furthermore, 12 of 25 cases, 48%, of refined surface models demonstrated good or excellent overall quality with a further 9 cases, 36%, demonstrating moderate quality to include facial, scalp and external ears. Additional 3D printing of 12 physical real-size models (20-36 weeks gestational age) revealed good/excellent overall quality in all cases and distinguishable features between healthy control cases and cases with confirmed anomalies, with only minor manual adjustments required before 3D printing.Despite varying image quality and data heterogeneity, 3D T2w SVR reconstructions and models provided sufficient resolution for the subjective characterisation of subtle craniofacial features. We also contributed a publicly accessible online 3D T2w MRI atlas of the fetal head, validated for accurate representation of normal fetal anatomy.Future research will focus on quantitative analysis, optimizing the pipeline, and exploring diagnostic, counselling, and educational applications in fetal craniofacial assessment.


Assuntos
Feto , Imageamento por Ressonância Magnética , Humanos , Estudos de Viabilidade , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idade Gestacional , Imageamento Tridimensional/métodos , Couro Cabeludo , Processamento de Imagem Assistida por Computador/métodos
9.
Sci Rep ; 14(1): 6637, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503833

RESUMO

Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range.


Assuntos
Feto , Processamento de Imagem Assistida por Computador , Gravidez , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idade Gestacional , Cuidado Pré-Natal
10.
Med Image Anal ; 94: 103134, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471339

RESUMO

Diffusion-relaxation MRI aims to extract quantitative measures that characterise microstructural tissue properties such as orientation, size, and shape, but long acquisition times are typically required. This work proposes a physics-informed learning framework to extract an optimal subset of diffusion-relaxation MRI measurements for enabling shorter acquisition times, predict non-measured signals, and estimate quantitative parameters. In vivo and synthetic brain 5D-Diffusion-T1-T2∗-weighted MRI data obtained from five healthy subjects were used for training and validation, and from a sixth participant for testing. One fully data-driven and two physics-informed machine learning methods were implemented and compared to two manual selection procedures and Cramér-Rao lower bound optimisation. The physics-informed approaches could identify measurement-subsets that yielded more consistently accurate parameter estimates in simulations than other approaches, with similar signal prediction error. Five-fold shorter protocols yielded error distributions of estimated quantitative parameters with very small effect sizes compared to estimates from the full protocol. Selected subsets commonly included a denser sampling of the shortest and longest inversion time, lowest echo time, and high b-value. The proposed framework combining machine learning and MRI physics offers a promising approach to develop shorter imaging protocols without compromising the quality of parameter estimates and signal predictions.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem , Aprendizado de Máquina
11.
Res Sq ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38343847

RESUMO

Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR<0.001), with changes most evident after 30 weeks gestation. A Significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR=0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.

12.
Hypertension ; 81(4): 836-847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38314606

RESUMO

BACKGROUND: Preeclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multiorgan approach to magnetic resonance imaging (MRI) investigation of preeclampsia, with the acquisition of maternal cardiac, placental, and fetal brain anatomic and functional imaging. METHODS: An observational study was performed recruiting 3 groups of pregnant women: those with preeclampsia, chronic hypertension, or no medical complications. All women underwent a cardiac MRI, and pregnant women underwent a placental-fetal MRI. Cardiac analysis for structural, morphological, and flow data were undertaken; placenta and fetal brain volumetric and T2* (which describes relative tissue oxygenation) data were obtained. All results were corrected for gestational age. A nonpregnant cohort was identified for inclusion in the statistical shape analysis. RESULTS: Seventy-eight MRIs were obtained during pregnancy. Cardiac MRI analysis demonstrated higher left ventricular mass in preeclampsia with 3-dimensional modeling revealing additional specific characteristics of eccentricity and outflow track remodeling. Pregnancies affected by preeclampsia demonstrated lower placental and fetal brain T2*. Within the preeclampsia group, 23% placental T2* results were consistent with controls, these were the only cases with normal placental histopathology. Fetal brain T2* results were consistent with normal controls in 31% of cases. CONCLUSIONS: We present the first holistic assessment of the immediate implications of preeclampsia on maternal heart, placenta, and fetal brain. As well as having potential clinical implications for the risk stratification and management of women with preeclampsia, this gives an insight into the disease mechanism.


Assuntos
Placenta , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Placenta/patologia , Estudos de Coortes , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
13.
Acta Obstet Gynecol Scand ; 103(3): 512-521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009386

RESUMO

INTRODUCTION: Spontaneous preterm birth prior to 32 weeks' gestation accounts for 1% of all deliveries and is associated with high rates of morbidity and mortality. A total of 70% are associated with chorioamnionitis which increases the incidence of morbidity, but for which there is no noninvasive antenatal test. Fetal adrenal glands produce cortisol and dehydroepiandosterone-sulphate which upregulate prior to spontaneous preterm birth. Ultrasound suggests that adrenal volumes may increase prior to preterm birth, but studies are limited. This study aimed to: (i) demonstrate reproducibility of magnetic resonance imaging (MRI) derived adrenal volumetry; (ii) derive normal ranges of total adrenal volumes, and adrenal: body volume for normal; (iii) compare with those who have spontaneous very preterm birth; and (iv) correlate with histopathological chorioamnionitis. MATERIAL AND METHODS: Patients at high risk of preterm birth prior to 32 weeks were prospectively recruited, and included if they did deliver prior to 32 weeks; a control group who delivered an uncomplicated pregnancy at term was also recruited. T2 weighted images of the entire uterus were obtained, and a deformable slice-to-volume method was used to reconstruct the fetal abdomen. Adrenal and body volumes were obtained via manual segmentation, and adrenal: body volume ratios generated. Normal ranges were created using control data. Differences between groups were investigated accounting for the effect of gestation by use of regression analysis. Placental histopathology was reviewed for pregnancies delivering preterm. RESULTS: A total of 56 controls and 26 cases were included in the analysis. Volumetry was consistent between observers. Adrenal volumes were not higher in the case group (p = 0.2); adrenal: body volume ratios were higher (p = 0.011), persisting in the presence of chorioamnionitis (p = 0.017). A cluster of three pairs of adrenal glands below the fifth centile were noted among the cases all of whom had a protracted period at risk of preterm birth prior to MRI. CONCLUSIONS: Adrenal: body volume ratios are significantly larger in fetuses who go on to deliver preterm than those delivering at term. Adrenal volumes were not significantly larger, we hypothesize that this could be due to an adrenal atrophy in fetuses with fulminating chorioamnionitis. A straightforward relationship of adrenal size being increased prior to preterm birth should not be assumed.


Assuntos
Corioamnionite , Nascimento Prematuro , Gravidez , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro/diagnóstico por imagem , Corioamnionite/diagnóstico por imagem , Projetos Piloto , Reprodutibilidade dos Testes , Placenta , Feto
14.
Prenat Diagn ; 44(1): 49-56, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126921

RESUMO

OBJECTIVES: To evaluate changes occurring in the fetal brain prior to very preterm delivery using MRI T2* relaxometry, an indirect assessment of tissue perfusion. METHOD: Fetuses that subsequently delivered spontaneously <32 weeks gestation and a control cohort were identified from pre-existing datasets. Participants had undergone a 3T MRI assessment including T2* relaxometry of the fetal brain using a 2D multi-slice gradient echo single shot echo planar imaging sequence. T2* maps were generated, supratentorial brain tissue was manually segmented and mean T2* values were generated. Groups were compared using quadratic regression. RESULTS: Twenty five fetuses that subsequently delivered <32 weeks and 67 that delivered at term were included. Mean gestation at MRI was 24.5 weeks (SD 3.3) and 25.4 weeks (SD 3.1) and gestation at delivery 25.5 weeks (SD 3.4) and 39.7 weeks (SD 1.2) in the preterm and term cohorts respectively. Brain mean T2* values were significantly lower in fetuses that subsequently delivered before 32 weeks gestation (p < 0.001). CONCLUSION: Alterations in brain maturation appear to occur prior to preterm delivery. Further work is required to explore these associations, but these findings suggest a potential window for therapeutic neuroprotective agents in fetuses at high risk of preterm delivery in the future.


Assuntos
Nascimento Prematuro , Recém-Nascido , Feminino , Humanos , Nascimento Prematuro/diagnóstico por imagem , Projetos Piloto , Lactente Extremamente Prematuro , Imageamento por Ressonância Magnética/métodos , Feto , Encéfalo
15.
Eur J Obstet Gynecol Reprod Biol ; 293: 106-114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141484

RESUMO

OBJECTIVES: To compare mean pulmonary T2* values and pulmonary volumes in fetuses that subsequently spontaneously delivered before 32 weeks with a control cohort with comparable gestational ages and to assess the value of mean pulmonary T2* as a predictor of preterm birth < 32 weeks' gestation. METHODS: MRI datasets scanned at similar gestational ages were selected from fetuses who spontaneously delivered < 32 weeks of gestation and a control group who subsequently delivered at term with no complications. All women underwent a fetal MRI on a 3 T MRI imaging system. Sequences included T2-weighted single shot fast spin echo and T2* sequences, using gradient echo single shot echo planar sequencing of the fetal thorax. Motion correction was performed using slice-to-volume reconstruction and T2* maps generated using in-house pipelines. Lungs were manually segmented and volumes and mean T2* values calculated for both lungs combined and left and right lung separately. Linear regression was used to compare values between the preterm and control cohorts accounting for the effects of gestation. Receiver operating curves were generated for mean T2* values and pulmonary volume as predictors of preterm birth < 32 weeks' gestation. RESULTS: Datasets from twenty-eight preterm and 74 control fetuses were suitable for analysis. MRI images were taken at similar fetal gestational ages (preterm cohort (mean ± SD) 24.9 ± 3.3 and control cohort (mean ± SD) 26.5 ± 3.0). Mean gestational age at delivery was 26.4 ± 3.3 for the preterm group and 39.9 ± 1.3 for the control group. Mean pulmonary T2* values remained constant with increasing gestational age while pulmonary volumes increased. Both T2* and pulmonary volumes were lower in the preterm group than in the control group for all parameters (both combined, left, and right lung (p < 0.001 in all cases). Adjusted for gestational age, pulmonary volumes and mean T2* values were good predictors of premature delivery in fetuses < 32 weeks (area under the curve of 0.828 and 0.754 respectively). CONCLUSION: These findings indicate that mean pulmonary T2* values and volumes were lower in fetuses that subsequently delivered very preterm. This may suggest potentially altered oxygenation and indicate that pulmonary morbidity associated with prematurity has an antenatal antecedent. Future work should explore these results correlating antenatal findings with long term pulmonary outcomes.


Assuntos
Lactente Extremamente Prematuro , Nascimento Prematuro , Humanos , Recém-Nascido , Gravidez , Feminino , Projetos Piloto , Nascimento Prematuro/diagnóstico por imagem , Feto , Pulmão/diagnóstico por imagem , Idade Gestacional , Imageamento por Ressonância Magnética/métodos
16.
Placenta ; 144: 29-37, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952367

RESUMO

INTRODUCTION: In-vivo measurements of placental structure and function have the potential to improve prediction, diagnosis, and treatment planning for a wide range of pregnancy complications, such as fetal growth restriction and pre-eclampsia, and hence inform clinical decision making, ultimately improving patient outcomes. MRI is emerging as a technique with increased sensitivity to placental structure and function compared to the current clinical standard, ultrasound. METHODS: We demonstrate and evaluate a combined diffusion-relaxation MRI acquisition and analysis pipeline on a sizable cohort of 78 normal pregnancies with gestational ages ranging from 15 + 5 to 38 + 4 weeks. Our acquisition comprises a combined T2*-diffusion MRI acquisition sequence - which is simultaneously sensitive to oxygenation, microstructure and microcirculation. We analyse our scans with a data-driven unsupervised machine learning technique, InSpect, that parsimoniously identifies distinct components in the data. RESULTS: We identify and map seven potential placental microenvironments and reveal detailed insights into multiple microstructural and microcirculatory features of the placenta, and assess their trends across gestation. DISCUSSION: By demonstrating direct observation of micro-scale placental structure and function, and revealing clear trends across pregnancy, our work contributes towards the development of robust imaging biomarkers for pregnancy complications and the ultimate goal of a normative model of placental development.


Assuntos
Imagem de Difusão por Ressonância Magnética , Placenta , Gravidez , Humanos , Feminino , Placenta/diagnóstico por imagem , Microcirculação , Retardo do Crescimento Fetal , Imageamento por Ressonância Magnética/métodos , Placentação
18.
Radiology ; 309(1): e223050, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847139

RESUMO

Background The benefits of using low-field-strength fetal MRI to evaluate antenatal development include reduced image artifacts, increased comfort, larger bore size, and potentially reduced costs, but studies about fetal low-field-strength MRI are lacking. Purpose To evaluate the reliability and feasibility of low-field-strength fetal MRI to assess anatomic and functional measures in pregnant participants using a commercially available 0.55-T MRI scanner and a comprehensive 20-minute protocol. Materials and Methods This prospective study was performed at a large teaching hospital (St Thomas' Hospital; London, England) from May to November 2022 in healthy pregnant participants and participants with pregnancy-related abnormalities using a commercially available 0.55-T MRI scanner. A 20-minute protocol was acquired including anatomic T2-weighted fast-spin-echo, quantitative T2*, and diffusion sequences. Key measures like biparietal diameter, transcerebellar diameter, lung volume, and cervical length were evaluated by two radiologists and an MRI-experienced obstetrician. Functional organ-specific mean values were given. Comparison was performed with existing published values and higher-field MRI using linear regression, interobserver correlation, and Bland-Altman plots. Results A total of 79 fetal MRI examinations were performed (mean gestational age, 29.4 weeks ± 5.5 [SD] [age range, 17.6-39.3 weeks]; maternal age, 34.4 years ± 5.3 [age range, 18.4-45.5 years]) in 47 healthy pregnant participants (control participants) and in 32 participants with pregnancy-related abnormalities. The key anatomic two-dimensional measures for the 47 healthy participants agreed with large cross-sectional 1.5-T and 3-T control studies. The interobserver correlations for the biparietal diameter in the first 40 consecutive scans were 0.96 (95% CI: 0.7, 0.99; P = .002) for abnormalities and 0.93 (95% CI: 0.86, 0.97; P < .001) for control participants. Functional features, including placental and brain T2* and placental apparent diffusion coefficient values, strongly correlated with gestational age (mean placental T2* in the control participants: 5.2 msec of decay per week; R2 = 0.66; mean T2* at 30 weeks, 176.6 msec; P < .001). Conclusion The 20-minute low-field-strength fetal MRI examination protocol was capable of producing reliable structural and functional measures of the fetus and placenta in pregnancy. Clinical trial registration no. REC 21/LO/0742 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Gowland in this issue.


Assuntos
Imageamento por Ressonância Magnética , Placenta , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Adulto Jovem , Estudos Transversais , Estudos de Viabilidade , Feto , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes
19.
ArXiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37608939

RESUMO

Fetal Magnetic Resonance Imaging at low field strengths is emerging as an exciting direction in perinatal health. Clinical low field (0.55T) scanners are beneficial for fetal imaging due to their reduced susceptibility-induced artefacts, increased T2* values, and wider bore (widening access for the increasingly obese pregnant population). However, the lack of standard automated image processing tools such as segmentation and reconstruction hampers wider clinical use. In this study, we introduce a semi-automatic pipeline using quantitative MRI for the fetal body at low field strength resulting in fast and detailed quantitative T2* relaxometry analysis of all major fetal body organs. Multi-echo dynamic sequences of the fetal body were acquired and reconstructed into a single high-resolution volume using deformable slice-to-volume reconstruction, generating both structural and quantitative T2* 3D volumes. A neural network trained using a semi-supervised approach was created to automatically segment these fetal body 3D volumes into ten different organs (resulting in dice values > 0.74 for 8 out of 10 organs). The T2* values revealed a strong relationship with GA in the lungs, liver, and kidney parenchyma (R2 >0.5). This pipeline was used successfully for a wide range of GAs (17-40 weeks), and is robust to motion artefacts. Low field fetal MRI can be used to perform advanced MRI analysis, and is a viable option for clinical scanning.

20.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37398121

RESUMO

Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range. In addition, the results of comparison between 60 normal and 12 fetal growth restriction datasets revealed significant differences in organ volumes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA