Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Inn Med (Heidelb) ; 65(1): 22-28, 2024 Jan.
Artigo em Alemão | MEDLINE | ID: mdl-38110759

RESUMO

The prevalence for chronic kidney disease (CKD) has steadily increased over the past decades. It is a gradually progressive disease that is associated with several comorbidities including cardiovascular diseases, hypertension, anemia, disorders of bone and mineral metabolism, electrolyte imbalance and acid-base abnormalities. All these comorbidities require adequate medication. Therefore, patients with CKD have a high risk for polypharmacy, which is defined as five or more medications daily. Polypharmacy causes a greatly increased risk for adverse drug effects and severe drug-drug interactions, which if not closely controlled and the individual doses adapted to the decreased renal function during the progression of the CKD, can result in increased morbidity and mortality. Therefore, several aspects of the medication need to be considered and constantly addressed. This article summarizes the problems arising from inadequate polypharmacy in CKD patients, including undesired adverse drug effects, drug interactions, the complexity of medication plans, treatment burden and nonadherence to the treatment. Furthermore, the most important steps to identify patients with inadequate polypharmacy are discussed, whereby complications can also be avoided and the benefits of the medication can be increased. Finally, the polypharmacy in acute kidney injury is dealt with.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Insuficiência Renal Crônica , Humanos , Polimedicação , Insuficiência Renal Crônica/complicações , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Interações Medicamentosas , Comorbidade
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298478

RESUMO

The last two decades have boosted research on sphingolipids as bioactive and signaling molecules [...].


Assuntos
Transdução de Sinais , Esfingolipídeos
3.
Metabolites ; 13(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36984866

RESUMO

Redox-active mediators are now appreciated as powerful molecules to regulate cellular dynamics such as viability, proliferation, migration, cell contraction, and relaxation, as well as gene expression under physiological and pathophysiological conditions. These molecules include the various reactive oxygen species (ROS), and the gasotransmitters nitric oxide (NO∙), carbon monoxide (CO), and hydrogen sulfide (H2S). For each of these molecules, direct targets have been identified which transmit the signal from the cellular redox state to a cellular response. Besides these redox mediators, various sphingolipid species have turned out as highly bioactive with strong signalling potential. Recent data suggest that there is a cross-regulation existing between the redox mediators and sphingolipid molecules that have a fundamental impact on a cell's fate and organ function. This review will summarize the effects of the different redox-active mediators on sphingolipid signalling and metabolism, and the impact of this cross-talk on pathophysiological processes. The relevance of therapeutic approaches will be highlighted.

4.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834678

RESUMO

Kidney cancer is among the top ten most common cancers to date. Within the kidney, renal cell carcinoma (RCC) is the most common solid lesion occurring. While various risk factors are suspected, including unhealthy lifestyle, age, and ethnicity, genetic mutations seem to be a key risk factor. In particular, mutations in the von Hippel-Lindau gene (Vhl) have attracted a lot of interest since this gene regulates the hypoxia inducible transcription factors HIF-1α and HIF-2α, which in turn drive the transcription of many genes that are important for renal cancer growth and progression, including genes involved in lipid metabolism and signaling. Recent data suggest that HIF-1/2 are themselves regulated by bioactive lipids which make the connection between lipids and renal cancer obvious. This review will summarize the effects and contributions of the different classes of bioactive lipids, including sphingolipids, glycosphingolipids, eicosanoids, free fatty acids, cannabinoids, and cholesterol to renal carcinoma progression. Novel pharmacological strategies interfering with lipid signaling to treat renal cancer will be highlighted.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Lipídeos , Proteína Supressora de Tumor Von Hippel-Lindau/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834691

RESUMO

Sphingosine 1-phosphate (S1P) lyase (SPL, Sgpl1) is an ER-associated enzyme that irreversibly degrades the bioactive lipid, S1P, and thereby regulates multiple cellular functions attributed to S1P. Biallelic mutations in the human Sglp1 gene lead to a severe form of a particular steroid-resistant nephrotic syndrome, suggesting that the SPL is critically involved in maintaining the glomerular ultrafiltration barrier, which is mainly built by glomerular podocytes. In this study, we have investigated the molecular effects of SPL knockdown (kd) in human podocytes to better understand the mechanism underlying nephrotic syndrome in patients. A stable SPL-kd cell line of human podocytes was generated by the lentiviral shRNA transduction method and was characterized for reduced SPL mRNA and protein levels and increased S1P levels. This cell line was further studied for changes in those podocyte-specific proteins that are known to regulate the ultrafiltration barrier. We show here that SPL-kd leads to the downregulation of the nephrin protein and mRNA expression, as well as the Wilms tumor suppressor gene 1 (WT1), which is a key transcription factor regulating nephrin expression. Mechanistically, SPL-kd resulted in increased total cellular protein kinase C (PKC) activity, while the stable downregulation of PKCδ revealed increased nephrin expression. Furthermore, the pro-inflammatory cytokine, interleukin 6 (IL-6), also reduced WT1 and nephrin expression. In addition, IL-6 caused increased PKCδ Thr505 phosphorylation, suggesting enzyme activation. Altogether, these data demonstrate that nephrin is a critical factor downregulated by the loss of SPL, which may directly cause podocyte foot process effacement as observed in mice and humans, leading to albuminuria, a hallmark of nephrotic syndrome. Furthermore, our in vitro data suggest that PKCδ could represent a new possible pharmacological target for the treatment of a nephrotic syndrome induced by SPL mutations.


Assuntos
Síndrome Nefrótica , Podócitos , Animais , Humanos , Camundongos , Interleucina-6 , RNA Mensageiro , Proteína Quinase C-delta
6.
Int J Mol Sci ; 24(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674922

RESUMO

A mass spectrometry-based lipidomic investigation of 30 patients with chronic hepatitis C virus (HCV) infection and 30 age- and sex-matched healthy blood donor controls was undertaken. The clustering and complete separation of these two groups was found by both unsupervised and supervised multivariate data analyses. Three patients who had spontaneously cleared the virus and three who were successfully treated with direct-acting antiviral drugs remained within the HCV-positive metabotype, suggesting that the metabolic effects of HCV may be longer-lived. We identified 21 metabolites that were upregulated in plasma and 34 that were downregulated (p < 1 × 10-16 to 0.0002). Eleven members of the endocannabinoidome were elevated, including anandamide and eight fatty acid amides (FAAs). These likely activated the cannabinoid receptor GPR55, which is a pivotal host factor for HCV replication. FAAH1, which catabolizes FAAs, reduced mRNA expression. Four phosphosphingolipids, d16:1, d18:1, d19:1 sphingosine 1-phosphate, and d18:0 sphinganine 1-phosphate, were increased, together with the mRNA expression for their synthetic enzyme SPHK1. Among the most profoundly downregulated plasma lipids were several lysophosphatidylinositols (LPIs) from 3- to 3000-fold. LPIs are required for the synthesis of phosphatidylinositol 4-phosphate (PI4P) pools that are required for HCV replication, and LPIs can also activate the GPR55 receptor. Our plasma lipidomic findings shed new light on the pathobiology of HCV infection and show that a subset of bioactive lipids that may contribute to liver pathology is altered by HCV infection.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus/fisiologia , Endocanabinoides , Replicação Viral , Antivirais , RNA Mensageiro
7.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682566

RESUMO

Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1-/-, or Sphk2-/- mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2-/- renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2-/- cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease.


Assuntos
Eritropoetina , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Epoetina alfa , Eritropoetina/genética , Eritropoetina/metabolismo , Fibroblastos/metabolismo , Hipóxia , Rim/metabolismo , Camundongos , RNA Mensageiro/genética , Esfingosina/metabolismo
8.
Biomolecules ; 12(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35204768

RESUMO

The quest for novel agents to regulate the generation of prostaglandin E2 (PGE2) is of high importance because this eicosanoid is a key player in inflammatory diseases. We synthesized a series of N-acylated and N-alkylated 2-aminobenzothiazoles and related heterocycles (benzoxazoles and benzimidazoles) and evaluated their ability to suppress the cytokine-stimulated generation of PGE2 in rat mesangial cells. 2-Aminobenzothiazoles, either acylated by the 3-(naphthalen-2-yl)propanoyl moiety (GK510) or N-alkylated by a chain carrying a naphthalene (GK543) or a phenyl moiety (GK562) at a distance of three carbon atoms, stand out in inhibiting PGE2 generation, with EC50 values ranging from 118 nM to 177 nM. Both GK510 and GK543 exhibit in vivo anti-inflammatory activity greater than that of indomethacin. Thus, N-acylated or N-alkylated 2-aminobenzothiazoles are novel leads for the regulation of PGE2 formation.


Assuntos
Dinoprostona , Indometacina , Animais , Anti-Inflamatórios/farmacologia , Prostaglandinas E , Ratos
9.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500564

RESUMO

Sphingosine 1-phosphate (S1P) is an extensively studied signaling molecule that contributes to cell proliferation, survival, migration and other functions through binding to specific S1P receptors. The cycle of S1P1 internalization upon S1P binding and recycling to the cell surface when local S1P concentrations are low drives T cell trafficking. S1P1 modulators, such as fingolimod, disrupt this recycling by inducing persistent S1P1 internalization and receptor degradation, which results in blocked egress of T cells from the secondary lymphoid tissues. The approval of these compounds for the treatment of multiple sclerosis has placed the development of S1PR modulators in the focus of pharmacological research, mostly for autoimmune indications. Here, we report on a novel anellated bismorpholino derivative of oxy-fingolimod, named ST-2191, which exerts selective S1P1 agonist and functional antagonist potency. ST-2191 is also effective in reducing the lymphocyte number in mice, and this effect is not dependent on phosphorylation by sphingosine kinase 2 for activity. These data show that ST-2191 is a novel S1P1 modulator, but further experiments are needed to analyze the therapeutic impact of ST-2191 in animal models of autoimmune diseases.


Assuntos
Cloridrato de Fingolimode/farmacologia , Lisofosfolipídeos/agonistas , Lisofosfolipídeos/antagonistas & inibidores , Esfingosina/análogos & derivados , Animais , Células CHO , Cricetulus , Humanos , Contagem de Linfócitos/métodos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/agonistas , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo , Linfócitos T/metabolismo
10.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502385

RESUMO

Erythropoietin (Epo) is the critical hormone for erythropoiesis. In adults, Epo is mainly produced by a subset of interstitial fibroblasts in the kidney, with minor amounts being produced in the liver and the brain. In this study, we used the immortalized renal interstitial fibroblast cell line FAIK F3-5 to investigate the ability of the bioactive sphingolipid sphingosine 1-phosphate (S1P) to stimulate Epo production and to reveal the mechanism involved. Stimulation of cells with exogenous S1P under normoxic conditions (21% O2) led to a dose-dependent increase in Epo mRNA and protein levels and subsequent release of Epo into the medium. S1P also enhanced the stabilization of HIF-2α, a key transcription factor for Epo expression. S1P-stimulated Epo mRNA and protein expression was abolished by HIF-2α mRNA knockdown or by the HIF-2 inhibitor compound 2. Furthermore, the approved S1P receptor modulator FTY720, and its active form FTY720-phosphate, both exerted a similar effect on Epo expression as S1P. The effect of S1P on Epo was antagonized by the selective S1P1 and S1P3 antagonists NIBR-0213 and TY-52156, but not by the S1P2 antagonist JTE-013. Moreover, inhibitors of the classical MAPK/ERK, the p38-MAPK, and inhibitors of protein kinase (PK) C and D all blocked the effect of S1P on Epo expression. Finally, the S1P and FTY720 effects were recapitulated in the Epo-producing human neuroblastoma cell line Kelly, suggesting that S1P receptor-dependent Epo synthesis is of general relevance and not species-specific. In summary, these data suggest that, in renal interstitial fibroblasts, which are the primary source of plasma Epo, S1P1 and 3 receptor activation upregulates Epo under normoxic conditions. This may have a therapeutic impact on disease situations such as chronic kidney disease, where Epo production is impaired, causing anemia, but it may also have therapeutic value as Epo can mediate additional tissue-protective effects in various organs.


Assuntos
Eritropoetina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem Celular , Células Cultivadas , Eritropoese , Eritropoetina/fisiologia , Fibroblastos/metabolismo , Cloridrato de Fingolimode/metabolismo , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Rim/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Ligação Proteica , Receptores de Lisoesfingolipídeo/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/fisiologia
11.
Circ Res ; 129(2): 237-239, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34236886

Assuntos
Homeostase
12.
Matrix Biol ; 98: 32-48, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34015468

RESUMO

The sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that is now appreciated as key regulatory factor for various cellular functions in the kidney, including matrix remodeling. It is generated by two sphingosine kinases (Sphk), Sphk1 and Sphk2, which are ubiquitously expressed, but have distinct enzymatic activities and subcellular localizations. In this study, we have investigated the role of Sphk2 in podocyte function and its contribution to diabetic nephropathy. We show that streptozotocin (STZ)-induced nephropathy and albuminuria in mice is prevented by genetic depletion of Sphk2. This protection correlated with an increased protein expression of the transcription factor Wilm's tumor suppressor gene 1 (WT1) and its target gene nephrin, and a reduced macrophage infiltration in immunohistochemical renal sections of STZ-treated Sphk2-/- mice compared to STZ-treated wildtype mice. To investigate changes on the cellular level, we used an immortalized human podocyte cell line and generated a stable knockdown of Sphk2 (Sphk2-kd) by a lentiviral transduction method. These Sphk2-kd cells accumulated sphingosine as a consequence of the knockdown, and showed enhanced nephrin and WT1 mRNA and protein expressions similar to the finding in Sphk2 knockout mice. Treatment of wildtype podocytes with the highly selective Sphk2 inhibitor SLM6031434 caused a similar upregulation of nephrin and WT1 expression. Furthermore, exposing cells to the profibrotic mediator transforming growth factor ß (TGFß) resulted on the one side in reduced nephrin and WT1 expression, but on the other side, in upregulation of various profibrotic marker proteins, including connective tissue growth factor (CTGF), fibronectin (FN) and plasminogen activator inhibitor (PAI) 1. All these effects were reverted by Sphk2-kd and SLM6031434. Mechanistically, the protection by Sphk2-kd may depend on accumulated sphingosine and inhibited PKC activity, since treatment of cells with exogenous sphingosine not only reduced the phosphorylation pattern of PKC substrates, but also increased WT1 protein expression. Moreover, the selective stable knockdown of PKCδ increased WT1 expression, suggesting the involvement of this PKC isoenzyme in WT1 regulation. The glucocorticoid dexamethasone, which is a treatment option in many glomerular diseases and is known to mediate a nephroprotection, not only downregulated Sphk2 and enhanced cellular sphingosine, but also enhanced WT1 and nephrin expressions, thus, suggesting that parts of the nephroprotective effect of dexamethasone is mediated by Sphk2 downregulation. Altogether, our data demonstrated that loss of Sphk2 is protective in diabetes-induced podocytopathy and can prevent proteinuria, which is a hallmark of many glomerular diseases. Thus, Sphk2 could serve as a new attractive pharmacological target to treat proteinuric kidney diseases.


Assuntos
Nefropatias Diabéticas , Fosfotransferases (Aceptor do Grupo Álcool) , Podócitos , Proteínas WT1 , Albuminúria/genética , Animais , Nefropatias Diabéticas/genética , Genes Supressores de Tumor , Proteínas de Membrana , Camundongos , Camundongos Knockout , Estreptozocina
13.
Biomolecules ; 11(2)2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668480

RESUMO

Prostaglandin E2 (PGE2) is a key mediator of inflammation, and consequently huge efforts have been devoted to the development of novel agents able to regulate its formation. In this work, we present the synthesis of various α-ketoheterocycles and a study of their ability to inhibit the formation of PGE2 at a cellular level. A series of α-ketobenzothiazoles, α-ketobenzoxazoles, α-ketobenzimidazoles, and α-keto-1,2,4-oxadiazoles were synthesized and chemically characterized. Evaluation of their ability to suppress the generation of PGE2 in interleukin-1ß plus forskolin-stimulated mesangial cells led to the identification of one α-ketobenzothiazole (GK181) and one α-ketobenzoxazole (GK491), which are able to suppress the PGE2 generation at a nanomolar level.


Assuntos
Dinoprostona/antagonistas & inibidores , Mesângio Glomerular/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Antagonistas de Prostaglandina/farmacologia , Animais , Células Cultivadas , Dinoprostona/biossíntese , Mesângio Glomerular/citologia , Mesângio Glomerular/metabolismo , Simulação de Acoplamento Molecular , Ratos , Análise Espectral/métodos
14.
Neuropharmacology ; 186: 108464, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460688

RESUMO

The sphingosine 1-phosphate (S1P) receptor 1 (S1P1) has emerged as a therapeutic target for the treatment of multiple sclerosis (MS). Fingolimod (FTY720) is the first functional antagonist of S1P1 that has been approved for oral treatment of MS. Previously, we have developed novel butterfly derivatives of FTY720 that acted similar to FTY720 in reducing disease symptoms in a mouse model of experimental autoimmune encephalomyelitis (EAE). In this study, we have synthesized a piperidine derivative of the oxazolo-oxazole compounds, denoted ST-1505, and its ring-opened analogue ST-1478, and characterised their in-vitro and in-vivo functions. Notably, the 3-piperidinopropyloxy moiety resembles a structural motif of pitolisant, a drug with histamine H3R antagonistic/inverse agonist activity approved for the treatment of narcolepsy. Both novel compounds exerted H3R affinities, and in addition, ST-1505 was characterised as a dual S1P1+3 agonist, whereas ST-1478 was a dual S1P1+5 agonist. Both multitargeting compounds were also active in mice and reduced the lymphocyte numbers as well as diminished disease symptoms in the mouse model of MS. The effect of ST-1478 was dependent on SK-2 activity suggesting that it is a prodrug like FTY720, but with a more selective S1P receptor activation profile, whereas ST-1505 is a fully active drug even in the absence of SK-2. In summary, these data suggest that the well soluble piperidine derivatives ST-1505 and ST-1478 hold promise as novel drugs for the treatment of MS and other autoimmune or inflammatory diseases, and by their H3R antagonist potency, they might additionally improve cognitive impairment during disease.


Assuntos
Encefalomielite Autoimune Experimental/prevenção & controle , Cloridrato de Fingolimode/administração & dosagem , Antagonistas dos Receptores Histamínicos H3/administração & dosagem , Esclerose Múltipla/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Receptores de Esfingosina-1-Fosfato/agonistas , Animais , Células CHO , Cricetinae , Cricetulus , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Cloridrato de Fingolimode/análogos & derivados , Cloridrato de Fingolimode/química , Antagonistas dos Receptores Histamínicos H3/química , Antagonistas dos Receptores Histamínicos H3/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Fármacos Neuroprotetores/química , Estrutura Secundária de Proteína , Receptores de Esfingosina-1-Fosfato/metabolismo
15.
Cell Signal ; 79: 109881, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33301900

RESUMO

Renal fibrosis is characterized by chronic inflammation and excessive accumulation of extracellular matrix and progressively leads to functional insufficiency and even total loss of kidney function. In this study we investigated the anti-fibrotic potential of two highly selective and potent SK2 inhibitors, SLM6031434 and HWG-35D, in unilateral ureter obstruction (UUO), a model for progressive renal fibrosis, in mice. In both cases, treatment with SLM6031434 or HWG-35D resulted in an attenuated fibrotic response to UUO in comparison to vehicle-treated mice as demonstrated by reduced collagen accumulation and a decreased expression of collagen-1 (Col1), fibronectin-1 (FN-1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA). Similar to our previous study in Sphk2-/- mice, we found an increased protein expression of Smad7, a negative regulator of the pro-fibrotic TGFß/Smad signalling cascade, accompanied by a strong accumulation of sphingosine in SK2 inhibitor-treated kidneys. Treatment of primary renal fibroblasts with SLM6031434 or HWG-35D dose-dependently increased Smad7 expression and ameliorated the expression of Col1, FN-1 and CTGF. In summary, these data prove the anti-fibrotic potential of SK2 inhibition in a mouse model of renal fibrosis, thereby validating SK2 as pharmacological target for the treatment of fibrosis in chronic kidney disease.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/genética
16.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899717

RESUMO

Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune disease of the central nervous system (CNS) which is associated with lower life expectancy and disability. The experimental antigen-induced encephalomyelitis (EAE) in mice is a useful animal model of MS, which allows exploring the etiopathogenetic mechanisms and testing novel potential therapeutic drugs. A new therapeutic paradigm for the treatment of MS was introduced in 2010 through the sphingosine 1-phosphate (S1P) analogue fingolimod (FTY720, Gilenya®), which acts as a functional S1P1 antagonist on T lymphocytes to deplete these cells from the blood. In this study, we synthesized two novel structures, ST-1893 and ST-1894, which are derived from fingolimod and chemically feature a morpholine ring in the polar head group. These compounds showed a selective S1P1 activation profile and a sustained S1P1 internalization in cultures of S1P1-overexpressing Chinese hamster ovary (CHO)-K1 cells, consistent with a functional antagonism. In vivo, both compounds induced a profound lymphopenia in mice. Finally, these substances showed efficacy in the EAE model, where they reduced clinical symptoms of the disease, and, on the molecular level, they reduced the T-cell infiltration and several inflammatory mediators in the brain and spinal cord. In summary, these data suggest that S1P1-selective compounds may have an advantage over fingolimod and siponimod, not only in MS but also in other autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Cloridrato de Fingolimode/farmacologia , Morfolinos/farmacologia , Animais , Células CHO , Sistema Nervoso Central/efeitos dos fármacos , Cricetulus , Modelos Animais de Doenças , Encefalomielite/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Cloridrato de Fingolimode/análogos & derivados , Imunossupressores/uso terapêutico , Ligantes , Linfopenia/tratamento farmacológico , Lisofosfolipídeos/metabolismo , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/efeitos dos fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo , Medula Espinal/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
18.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092937

RESUMO

Ceramide kinase (CerK) is a lipid kinase that converts the proapoptotic ceramide to ceramide 1-phosphate, which has been proposed to have pro-malignant properties and regulate cell responses such as proliferation, migration, and inflammation. We used the parental human breast cancer cell line MDA-MB-231 and two single cell progenies derived from lung and bone metastasis upon injection of the parental cells into immuno-deficient mice. The lung and the bone metastatic cell lines showed a marked upregulation of CerK mRNA and activity when compared to the parental cell line. The metastatic cells also had increased migratory and invasive activity, which was dose-dependently reduced by the selective CerK inhibitor NVP-231. A similar reduction of migration was seen when CerK was stably downregulated with small hairpin RNA (shRNA). Conversely, overexpression of CerK in parental MDA-MB-231 cells enhanced migration, and this effect was also observed in the non-metastatic cell line MCF7 upon CerK overexpression. On the molecular level, CerK overexpression increased the activation of protein kinase Akt. The increased migration of CerK overexpressing cells was mitigated by the CerK inhibitor NVP-231, by inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway and the Rho kinase, but not by inhibition of the classical extracellular signal-regulated kinase (ERK) pathway. Altogether, our data demonstrate for the first time that CerK promotes migration and invasion of metastatic breast cancer cells and that targeting of CerK has potential to counteract metastasis in breast cancer.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Movimento Celular/genética , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Benzotiazóis/farmacologia , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Regulação para Cima
19.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069843

RESUMO

Sphingosine 1-phosphate (S1P) is a key bioactive lipid that regulates a myriad of physiological and pathophysiological processes, including endothelial barrier function, vascular tone, vascular inflammation, and angiogenesis. Various S1P receptor subtypes have been suggested to be involved in the regulation of these processes, whereas the contribution of intracellular S1P (iS1P) through intracellular targets is little explored. In this study, we used the human cerebral microvascular endothelial cell line HCMEC/D3 to stably downregulate the S1P lyase (SPL-kd) and evaluate the consequences on endothelial barrier function and on the molecular factors that regulate barrier tightness under normal and inflammatory conditions. The results show that in SPL-kd cells, transendothelial electrical resistance, as a measure of barrier integrity, was regulated in a dual manner. SPL-kd cells had a delayed barrier build up, a shorter interval of a stable barrier, and, thereafter, a continuous breakdown. Contrariwise, a protection was seen from the rapid proinflammatory cytokine-mediated barrier breakdown. On the molecular level, SPL-kd caused an increased basal protein expression of the adherens junction molecules PECAM-1, VE-cadherin, and ß-catenin, increased activity of the signaling kinases protein kinase C, AMP-dependent kinase, and p38-MAPK, but reduced protein expression of the transcription factor c-Jun. However, the only factors that were significantly reduced in TNFα/SPL-kd compared to TNFα/control cells, which could explain the observed protection, were VCAM-1, IL-6, MCP-1, and c-Jun. Furthermore, lipid profiling revealed that dihydro-S1P and S1P were strongly enhanced in TNFα-treated SPL-kd cells. In summary, our data suggest that SPL inhibition is a valid approach to dampenan inflammatory response and augmente barrier integrity during an inflammatory challenge.


Assuntos
Barreira Hematoencefálica/metabolismo , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Neovascularização Patológica/genética , Esfingosina/análogos & derivados , Aldeído Liases/genética , Barreira Hematoencefálica/patologia , Linhagem Celular , Quimiocina CCL2/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Interleucina-6/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Lisofosfolipídeos/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais/genética , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética , beta Catenina/genética
20.
Pharmacol Res ; 154: 104170, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776422

RESUMO

The past two decades of intense research have revealed a key role of the sphingolipid molecule sphingosine 1-phosphate (S1P) in regulating multiple physiological and pathophysiological processes including cell proliferation and survival, cell migration, inflammatory mediator synthesis and tissue remodeling. S1P mainly acts through five high-affinity G protein-coupled S1P receptors, which are ubiquitously expressed and mediate a complex network of signaling in a cell type dependent manner. S1P receptors have become an attractive pharmacological target to interfere with S1P-mediated cellular responses, which contribute to various autoimmune and inflammatory diseases. Pioneering in this field was the synthesis of FTY720 (fingolimod, Gilenya®) from myriocin, one of the metabolites of the fungus Isaria sinclairii known from traditional Chinese medicine for its antibacterial and energy boosting effect. Fingolimod turned out as a very potent immunomodulatory agent that subsequently passed all clinical trials successfully and is now approved for the treatment of relapsing-remitting multiple sclerosis. Pharmacologically, fingolimod was characterized as a non-selective agonist of all of the S1P receptors (S1PR), with the exception of S1P2, and in addition, as a selective S1P1 functional antagonist by induction of irreversible S1P1 internalization and degradation. Since proper lymphocyte trafficking depends on the expression of S1P1 on lymphocytes, the degradation of S1P1 leads to trapping and accumulation of lymphocytes in secondary lymphoid tissue, and consequently to a depletion of lymphocytes from the blood. Novel S1PR modulators are now being developed with a more selective receptor activation profile and improved pharmacokinetic characteristics. In this review, we will summarize the state-of-the-art approaches that target directly or indirectly S1P signaling and may be useful as novel strategies to treat autoimmune and inflammatory diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Inflamação/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Doenças Autoimunes/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA