Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Conserv Physiol ; 10(1): coac037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733620

RESUMO

Predicted future warming of aquatic environments could make fish vulnerable to naturally occurring fasting periods during migration between feeding and spawning sites, as these endeavours become energetically more expensive. In this study, Atlantic salmon (Salmo salar) acclimated to midrange (9°C) or elevated suboptimal (18°C) temperatures were subjected to critical (Ucrit) and sustained (4 hours at 80% Ucrit) swimming trials before and after 4 weeks of fasting. Fasting caused weight losses of 7.3% and 8.3% at 9°C and 18°C, respectively. The Ucrit was unaffected by fasting, but higher at 18°C. Fatigue was associated with higher plasma cortisol, osmolality, Na+ and Cl- at 18°C, and ionic disturbances were higher in fasted fish. All fish completed the sustained swim trials while maintaining constant oxygen uptake rates (MO2), indicating strictly aerobic swimming efforts. At low swimming speeds MO2 was downregulated in fasted fish by 23.8% and 15.6% at 9°C and 18°C, respectively, likely as an adaptation to preserve resources. However, at higher speeds MO2 became similar to fed fish showing that maximum metabolic rates were maintained. The changes in MO2 lowered costs of transport and optimal swimming speeds in fasted fish at both temperatures, but these energetic alterations were smaller at 18°C while routine MO2 was 57% higher than at 9°C. As such, this study shows that Atlantic salmon maintain both glycolytic and aerobic swimming capacities after extended fasting, even at elevated suboptimal temperatures, and adaptive metabolic downregulation provides increased swimming efficiency in fasted fish. Although, improved swimming energetics were smaller when fasting at the higher temperature while metabolism becomes elevated. This could affect migration success in warming climates, especially when considering interactions with other costly activities such as coping with parasites obtained when passing aquaculture sites during seaward travel or gonad development while being voluntarily anorexic during upriver travel to spawning grounds.

2.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34931653

RESUMO

Parasites are widespread in nature, where they affect the energy budget of hosts, and depending on the imposed pathogenic severity, this may reduce host fitness. However, the energetic costs of parasite infections are rarely quantified. In this study, we measured metabolic rates in recently seawater adapted Atlantic salmon (Salmo salar) infected with the ectoparasitic copepod Lepeophtheirus salmonis and used an aerobic scope framework to assess the potential ecological impact of this parasite-host interaction. The early chalimus stages of L. salmonis did not affect either standard or maximum metabolic rates. However, the later mobile pre-adult stages caused an increase in both standard and maximum metabolic rate yielding a preserved aerobic scope. Notably, standard metabolic rates were elevated by 26%, presumably caused by increased osmoregulatory burdens and costs of mobilizing immune responses. The positive impact on maximum metabolic rates was unexpected and suggests that fish are able to transiently overcompensate energy production to endure the burden of parasites and thus allow for continuation of normal activities. However, infected fish are known to suffer reduced growth, and this suggests that a trade-off exists in acquisition and assimilation of resources despite an uncompromised aerobic scope. As such, when assessing impacts of environmental or biotic factors, we suggest that elevated routine costs may be a stronger predictor of reduced fitness than the available aerobic scope. Furthermore, studying the effects on parasitized fish in an ecophysiological context deserves more attention, especially considering interacting effects of other stressors in the Anthropocene.


Assuntos
Copépodes , Doenças dos Peixes , Salmo salar , Animais , Copépodes/fisiologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Imunidade
3.
J Fish Biol ; 100(3): 687-696, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34928505

RESUMO

In this study, ballan wrasse Labrus bergylta were subjected to either a conventional 1-day or an extended 5-day respirometry protocol. Additionally, in the 5-day protocol the fish were subjected to a 12 h light-dark cycle to assess the effects of photoperiods on metabolic rates (MO2 ). Diurnal patterns in routine and resting MO2 were not observed, suggesting that circadian rhythms in metabolism largely are driven by activity patterns rather than being of endogenous origin. Moreover, lack of a detectable circadian MO2 may be an adaptation to lower costs of living in ballan wrasse. Protocol length influenced standard metabolic rates (SMR) where estimates decreased by 13% and 17% when using 48 h and 5 days, respectively, compared to 24 h. The maximum metabolic rate (MMR) and the derived absolute aerobic scope (MMR-SMR) were unaffected by protocol length. However, factorial scopes (MMR/SMR) were reduced from 8.5 to 6.4 in the 5-day protocol, showing that factorial scopes are more sensitive to how SMR are obtained. The critical oxygen tension (Pcrit ) was reduced from 15% PO2 in the 1-day group to 11% PO2 in the 5-day group. However, MO2 in response to decreasing PO2 was similar, which together with a similar oxygen extraction coefficient, α (MO2 /PO2 ), suggested that the higher Pcrit in the 1-day group was an artefact of overestimating SMR. Finally, α was 12% lower at MMR compared to at Pcrit , which either means that MMR was underestimated in proportion to this difference or that α is not constant in the entire PO2 range. In summary, this study found that a conventional 1-day respirometry protocol may overestimate SMR and thereby alter the derived Pcrit and aerobic scope, while α is unaffected by protocol length. Moreover, alternating light conditions in the absence of other stressors did not influence MO2 in ballan wrasse.


Assuntos
Perciformes , Fotoperíodo , Animais , Ritmo Circadiano , Peixes , Perciformes/fisiologia
4.
Front Physiol ; 12: 755659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899386

RESUMO

Advances in tag technology now make it possible to monitor the behavior of small groups of individual fish as bioindicators of population wellbeing in commercial aquaculture settings. For example, tags may detect unusual patterns in fish heart rate, which could serve as an early indicator of whether fish health or welfare is becoming compromised. Here, we investigated the use of commercially available heart rate biologgers implanted into 24 Atlantic salmon weighing 3.6 ± 0.8 kg (mean ± SD) to monitor fish over 5 months in a standard 12 m × 12 m square sea cage containing ∼6,000 conspecifics. Post tagging, fish established a diurnal heart rate rhythm within 24 h, which stabilized after 4 days. Whilst the registered tagged fish mortality over the trial period was 0%, only 75% of tagged fish were recaptured at harvest, resulting in an unexplained tag loss rate of 25%. After 5 months, tagged fish were approximately 20% lighter and 8% shorter, but of the similar condition when compared to untagged fish. Distinct diurnal heart rate patterns were observed and changed with seasonal day length of natural illumination. Fish exhibited lower heart rates at night [winter 39 ± 0.2 beats per min (bpm), spring 37 ± 0.2 bpm, summer 43 ± 0.3 bpm, mean ± SE] than during the day (winter 50 ± 0.3 bpm, spring 48 ± 0.2 bpm, summer 49 ± 0.2 bpm) with the difference between night and day heart rates near half during the summer (6 bpm) compared to winter and spring (both 11 bpm). When fish experienced moderate and severe crowding events in early summer, the highest hourly heart rates reached 60 ± 2.5 bpm and 72 ± 2.4 bpm, respectively, on the day of crowding. Here, if the negative sublethal effects on fish that carry tags (e.g., growth rate) can be substantially reduced, the ability to monitor diurnal heart rate patterns across seasons and detect changes during crowding events, and using heart rate biologgers could be a useful warning mechanism for detecting sudden changes in fish behavior in sea cages.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33524618

RESUMO

In this study, Atlantic salmon post smolts (~250 g, ~29 cm) were fasted for four weeks at 12 °C in full strength seawater. During this period, the critical swimming speed (Ucrit) was measured after 1, 2 and 4 weeks of fasting, as well as in a fed control group. Furthermore, blood samples were taken in each treatment group prior to the swim test, at fatigue, and following 3 h and 24 h of subsequent recovery. Four weeks of fasting gradually reduced the condition factor from 1.03 to 0.89. However, the Ucrit remained statistically unaffected at 3.5 body lengths s-1. Exhaustive exercise stress caused large increases in plasma osmolality, [Cl-], [Na+], [Ca2+], [lactate] and [cortisol], while haematocrit and [haemoglobin] also increased. Plasma ions and lactate had increased further after 3 h recovery, and osmolality, [Cl-] and [Na+] were still elevated above control levels after 24 h while other blood parameters were fully recovered. Osmotic disturbances may therefore be considered the most challenging stressor during strenuous exercise in seawater. Only minor effects of fasting period on blood parameters in response to exhaustive exercise were detected, which included slightly higher osmotic disturbances and a repressed response in red blood cell recruitment at fatigue in fasted fish. Furthermore, the 4-week fasting group had a reduced cortisol response following fatigue compared to the other treatment groups. In conclusion, these results show that Atlantic salmon maintain their full swimming capacity as well as their ability to respond and recover from acute stress during an extended period of food deprivation.


Assuntos
Jejum , Salmo salar/fisiologia , Estresse Fisiológico , Natação , Animais , Hematócrito , Concentração Osmolar , Salmo salar/sangue
6.
J Fish Biol ; 98(4): 1049-1058, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32243571

RESUMO

As a first attempt to assess bone health in cleaner fish production, wild and cultured ballan wrasse Labrus bergylta and lumpfish Cyclopterus lumpus were examined by radiology. In C. lumpus, wild fish (57%) had more vertebra deformities (≥1 deformed vertebrae) than cultured fish (2-16%). One wild C. lumpus had lordosis and another was missing the tail fin. In L. bergylta, wild fish (11%) had fewer vertebra deformities than cultured individuals (78-91%). Among the cultured L. bergylta, 17-53% of the fish had severe vertebra deformities (≥6 deformed vertebrae) with two predominate sites of location, one between vertebra 4 and 10 (S1) in the trunk, and one between 19 and 26 (S2) in the tail. Fusions dominated S1, while compressions dominated S2. Although wild L. bergylta had a low vertebra deformity level, 83% had calluses and 14% had fractures in haemal/neural spines and/or ribs. The site-specific appearance and pathology of fracture and callus in wild L. bergylta suggests these are induced by chronic mechanical stress, and a possible pathogenesis for fish hyperostosis is presented based on this notion. In conclusion, good bone health was documented in cultured C. lumpus, but cultured L. bergylta suffered poor bone health. How this affects survival, growth, swimming abilities and welfare in cultured wrasse should be further investigated. SIGNIFICANCE STATEMENT: Skeletal deformities were studied in ballan wrasse and lumpfish of both wild and cultured origin for the first time to identify potential welfare issues when deploying them as cleaner fish in salmon sea cages. While cultured lumpfish showed good bone health, cultured wrasse had a high occurrence of vertebra deformities, which is expected to impact lice eating efficiency and animal welfare negatively. These deformities are most likely induced early in development.


Assuntos
Aquicultura/métodos , Doenças do Desenvolvimento Ósseo/veterinária , Doenças dos Peixes/patologia , Perciformes , Salmo salar/parasitologia , Animais , Doenças do Desenvolvimento Ósseo/patologia
7.
J Fish Biol ; 98(1): 102-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32984959

RESUMO

In this study, heart rate (HR) bio-loggers were implanted in the abdominal cavity of 12 post-smolt Atlantic salmon Salmo salar weighing 1024 ± 31 g and acclimated to 12°C sea water. One week after the surgical procedure, a critical swim speed (Ucrit ) test was performed on tagged and untagged conspecifics, whereafter tagged fish were maintained in their holding tanks for another week. The Ucrit was statistically similar between tagged and untagged fish (2.67 ± 0.04 and 2.74 ± 0.05 body lengths s-1 , respectively) showing that the bio-logger did not compromise the swimming performance. In the pre-swim week, a diurnal cycle was apparent with HR peaking at 65 beats min-1 during the day and approaching 40 beats min-1 at night. In the Ucrit test, HR increased approximately exponentially with swimming speed until a plateau was reached at the final speed before fatigue with a maximum of 85.2 ± 0.7 beats min-1 . During subsequent recovery tagged fish could be divided into a surviving group (N = 8) and a moribund group (N = 4). In surviving fish HR had fully recovered to pre-swim levels after 24 h, including reestablishment of a diurnal HR cycle. In moribund fish HR never recovered and remained elevated at c. 80 beats min-1 for 4 days, whereafter they started dying. We did not identify a proximal cause of death in moribund fish, but possible explanations are discussed. Tail beat frequency (TBF) was also measured and showed a more consistent response to increased swimming speeds. As such, when exploring correlations between HR, TBF and metabolic rates at different swimming speeds, TBF provides better predictions. On the contrary, HR measurements in free swimming fish over extended periods of time are useful for other purposes such as assessing the accumulative burden of various stressors and recovery trajectories from exhaustive exercise.


Assuntos
Frequência Cardíaca/fisiologia , Tecnologia de Sensoriamento Remoto/instrumentação , Salmo salar/fisiologia , Natação/fisiologia , Aclimatação , Sistemas de Identificação Animal/instrumentação , Animais , Próteses e Implantes , Salmo salar/cirurgia , Água do Mar
8.
J Therm Biol ; 89: 102548, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32364990

RESUMO

Marine organisms living at low temperatures tend to have larger genomes and larger cells which suggest that these traits can be beneficial in colder environments. In fish, triploidy (three complete sets of chromosomes) can be induced experimentally following fertilization, which provides a model system to investigate the hypothesis that larger cells and genomes offers a physiological advantage at low temperatures. We tested this hypothesis by measuring metabolic rates and swimming performance of diploid and triploid Atlantic salmon (Salmo salar) post smolts acclimated to 3 or 10.5 °C. At 10.5 °C, triploids had significantly lower maximum metabolic rates which resulted in a lower aerobic scope compared to diploids. In addition, triploids initiated ram ventilation at lower swimming speeds, providing further evidence of a reduced capacity to meet oxygen demands during strenuous activity at 10.5 °C. However, at 3 °C, metabolic rates and critical swimming speeds were similar between both ploidies, and as expected substantially lower than at 10.5 °C. Therefore, triploidy in colder environments did not provide any advantage over diploidy in terms of metabolic rate traits or swimming performance in Atlantic salmon. We therefore conclude that traits, other than aerobic scope and swimming performance, contribute to the trend for increased cell and genome size in marine ectotherms living in cold environments.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Salmo salar/genética , Triploidia , Animais , Consumo de Oxigênio , Salmo salar/fisiologia , Natação
9.
J Fish Biol ; 95(3): 893-902, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31265133

RESUMO

In this study, swim-tunnel respirometry was performed on Atlantic salmon Salmo salar post-smolts in a 90 l respirometer on individuals and compared with groups or individuals of similar sizes tested in a 1905 l respirometer, to determine if differences between set-ups and protocols exist. Standard metabolic rate (SMR) derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed. However, maximum metabolic rate (MMR) estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress. Most notably, the mean (±SE) MMR was 511 ± 15 mg O2 kg-1 h-1 in the swim test which was 52% higher compared with 337 ± 9 mg O2 kg-1 in the chase protocol, showing that the latter approach causes a substantial underestimation. Performing group respirometry in the larger swim tunnel provided statistically similar estimates of SMR and MMR as for individual fish tested in the smaller tunnel. While we hypothesised a larger swim section and swimming in groups would improve swimming performance, Ucrit was statistically similar between both set-ups and statistically similar between swimming alone v. swimming in groups in the larger set-up, suggesting that this species does not benefit hydrodynamically from swimming in a school in these conditions. Different methods and set-ups have their own respective limitations and advantages depending on the questions being addressed, the time available, the number of replicates required and if supplementary samplings such as blood or gill tissues are needed. Hence, method choice should be carefully considered when planning experiments and when comparing previous studies.


Assuntos
Metabolismo Energético/fisiologia , Consumo de Oxigênio/fisiologia , Salmo salar/fisiologia , Natação/fisiologia , Animais
10.
Artigo em Inglês | MEDLINE | ID: mdl-30690152

RESUMO

The most capricious environmental variable in aquatic habitats, dissolved O2, is fundamental to the fitness and survival of fish. Using swim tunnel respirometry we test how acute exposure to reduced O2 levels, similar to those commonly encountered by fish in crowded streams and on commercial aquaculture farms, affect metabolic rate and swimming performance in Atlantic salmon of three size classes: 0.2, 1.0 and 3.5 kg. Exposure to 45-55% dissolved O2 saturation substantially reduced the aerobic capacity and swimming performance of salmon of all sizes. While hypoxia did not affect standard metabolic rate, it caused a significant decrease in maximum metabolic rate, resulting in reduced absolute and factorial aerobic scope. The most pronounced changes were observed in the smallest fish, where critical swimming speed was reduced from 91 to 70 cm s-1 and absolute aerobic scope dropped by 62% relative to the same measurement in normoxia. In normoxia, absolute critical swimming speed (Ucrit) increased with size, while relative Ucrit, measured in body lengths s-1, was highest in the small fish (3.5) and decreased with larger size (medium = 2.2). Mass specific metabolic rate and cost of transport were inversely related to size, with calculated metabolic scaling exponents of 0.65 for bSMR and 0.78 for bMMR. Metabolic O2 demand increased exponentially with current speed irrespective of fish size (R2 = 0.97-0.99). This work demonstrates that moderate hypoxia reduces the capacity for activity and locomotion in Atlantic salmon, with smaller salmon most vulnerable to hypoxic conditions. As warm and hypoxic conditions become more prevalent in aquatic environments worldwide, understanding local O2 budgets is critical to maximizing the welfare and survival of farmed and wild salmon.


Assuntos
Tamanho Corporal , Hipóxia , Salmo salar/metabolismo , Animais , Aquicultura , Metabolismo Energético , Oxigênio/metabolismo , Salmo salar/fisiologia , Natação/fisiologia
11.
J Exp Biol ; 221(Pt 23)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30352827

RESUMO

Preferentially regulating intracellular pH (pHi) confers exceptional CO2 tolerance on fish, but is often associated with reductions in extracellular pH (pHe) compensation. It is unknown whether these reductions are due to intrinsically lower capacities for pHe compensation, hypercarbia-induced reductions in water pH or other factors. To test how water pH affects capacities and strategies for pH compensation, we exposed the CO2-tolerant fish Pangasianodon hypophthalmus to 3 kPa PCO2  for 20 h at an ecologically relevant water pH of 4.5 or 5.8. Brain, heart and liver pHi was preferentially regulated in both treatments. However, blood pHe compensation was severely reduced at water pH 4.5 but not 5.8. This suggests that low water pH limits acute pHe but not pHi compensation in fishes preferentially regulating pHi Hypercarbia-induced reductions in water pH might therefore underlie the unexplained reductions to pHe compensation in fishes preferentially regulating pHi, and may increase selection for preferential pHi regulation.


Assuntos
Equilíbrio Ácido-Base , Dióxido de Carbono/metabolismo , Peixes-Gato/fisiologia , Animais , Encéfalo/metabolismo , Peixes-Gato/sangue , Água Doce/química , Concentração de Íons de Hidrogênio , Hipercapnia , Fígado/metabolismo , Miocárdio/metabolismo
12.
Biol Open ; 7(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30115616

RESUMO

The lumpfish (Cyclopterus lumpus) is a semi-pelagic globiform teleost native to the North Atlantic with a ventral suction disc that allows for attachment onto surfaces. Some local populations are in decline and the species has recently become important in salmonid sea cages as cleaner fish. Little is known about the basal physiology of the lumpfish, and a characterization of thermal performance, aerobic capacity, swimming behaviour and stress response is therefore warranted. In the present study, swim tunnel respirometry was performed on lumpfish acclimated to 3, 9 or 15°C. Higher temperatures were also attempted, but at 18°C their behaviour became erratic and 15% of the fish died over 3 weeks of acclimation. Water current tolerance was assessed in two size classes (∼75 g and ∼300 g) both with and without the ability to voluntarily use the ventral suction disc. Lastly, blood samples were taken from resting, exhausted and recovered fish to assess haematological effects of exercise stress. Lumpfish had relatively low aerobic scopes that increased slightly with temperature. Critical swimming speed was poor, increasing within the tested temperatures from 1.3 to 1.7 body lengths s-1 in 300 g fish. They struggled to remain sucked onto surfaces at currents above 70-110 cm s-1, depending on size. Acute stress effects were modest or non-existent in terms of changes in cortisol, lactate, glucose, erythrocytes and ion balance. These results describe a typical sluggish and benthic species, which is contradictory to the pelagic nature of lumpfish in large parts of its lifecycle.

13.
Conserv Physiol ; 5(1): cox066, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218225

RESUMO

The parasitic amoeba Paramoeba perurans is an aetiological agent of amoebic gill disease (AGD), a serious problem in seawater salmonid aquaculture globally. Other finfish species are also infected and infection events may be associated with periods of unusual high temperatures. Currently little is known about the impact of AGD on wild fish, but in a time with global warming and increasing aquaculture production this potential threat could be on the rise. A better understanding of the pathophysiology of infected fish is therefore warranted. In this study, groups of Atlantic salmon with and without AGD were tested in a large swim tunnel respirometer in seawater at 13°C to assess oxygen uptake, swimming capacity and blood parameters. Standard metabolic rates were similar between groups, but the maximum rate of oxygen uptake was drastically reduced in infected fish, which resulted in a smaller aerobic scope (AS) of 203 mg O2 kg-1 h-1 compared to 406 mg O2 kg-1 h-1 in healthy fish. The critical swimming speed was 2.5 body lengths s-1 in infected fish and 3.0 body lengths s-1 in healthy ones. Furthermore, AGD fish had lower haematocrit and [haemoglobin], but similar condition factor compared to healthy fish. Prior to swim trials infected fish had higher plasma osmolality, elevated plasma [Na+], [Cl-] and [cortisol], indicating reduced capacity to maintain ionic homoeostasis as well as chronic stress during routine conditions. These results demonstrate that AGD compromises gill function both in terms of gas exchange and ion regulation, and consequently the capacity for aerobic activity is reduced. Reduced AS due to the P. perurans infections is likely to interfere with appetite, growth and overall survival, even more so in the context of a warmer and more hypoxic future.

14.
J Exp Biol ; 220(Pt 15): 2757-2764, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507190

RESUMO

The Atlantic salmon is extensively studied owing to conservation concerns and its economic importance in aquaculture. However, a thorough report of their aerobic capacity throughout their entire thermal niche has not been described. In this study, Atlantic salmon (∼450 g) were acclimated for 4 weeks at 3, 8, 13, 18 or 23°C, and then tested in a large Brett-type swimming respirometer in groups of 10 per trial. Both standard metabolic rate and active metabolic rate continued to increase with temperature, which resulted in an aerobic scope that also increased with temperature, but was statistically similar between 13, 18 and 23°C. The critical swimming speed peaked at 18°C (93.1±1.2 cm s-1), and decreased significantly at the extreme temperatures to 74.8±0.5 and 84.8±1.6 cm s-1 at 3 and 23°C, respectively. At 23°C, the accumulated mortality reached 20% over 4 weeks, while no fish died during acclimation at colder temperatures. Furthermore, fish at 23°C had poor appetite and lower condition factor despite still having a high aerobic scope, suggesting that oxygen uptake was not the limiting factor in the upper thermal niche boundary. In conclusion, Atlantic salmon were able to maintain a high aerobic capacity and good swimming capabilities throughout the entire thermal interval tested, thus demonstrating a high level of flexibility in respiratory capacity towards different temperature exposures.


Assuntos
Aclimatação , Consumo de Oxigênio , Salmo salar/fisiologia , Natação , Temperatura , Animais
15.
Aquat Toxicol ; 176: 151-60, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27135703

RESUMO

Striped catfish (Pangasianodon hypophthalmus) are farmed intensively at high stocking densities in Vietnam where they are likely to encounter environmental hypercapnia as well as occasional high levels of aquatic nitrite. Nitrite competes with Cl(-) for uptake at the branchial HCO3(-)/Cl(-) exchanger, causing a drastic reduction in the blood oxygen carrying capacity through the formation of methaemoglobin and nitrosylhaemoglobin. Environmental hypercapnia induces a respiratory acidosis where the branchial HCO3(-)/Cl(-) exchange activity is reduced in order to retain HCO3(-) for pH recovery, which should lead to a reduced nitrite uptake. To assess the effect of hypercapnia on nitrite uptake, fish were cannulated in the dorsal aorta, allowing repeated blood sampling for measurements of haemoglobin derivatives, plasma ions and acid-base status during exposure to 0.9mM nitrite alone and in combination with acute and 48h acclimated hypercapnia over a period of 72h. Nitrite uptake was initially reduced during the hypercapnia-induced acidosis, but after pH recovery the situation was reversed, resulting in higher plasma nitrite concentrations and lower functional haemoglobin levels that eventually caused mortality. This suggests that branchial HCO3(-)/Cl(-) exchange activity is reduced only during the initial acid-base compensation, but subsequently increases with the greater availability of internal HCO3(-) counter-ions as pH is compensated. The data further suggest that branchial Na(+)/H(+) exchange plays a significant role in the initial phase of acid-base compensation. Overall, longer term environmental hypercapnia does not protect against nitrite uptake in P. hypophthalmus, but instead enhances it. In addition, we observed a significant size effect in nitrite accumulation, where large fish attained plasma [nitrite] above the ambient concentration, while small fish did not. Small P. hypophthalmus instead had significantly higher plasma [nitrate], and haemoglobin concentrations, revealing greater capacity for detoxifying nitrite by oxidising it to nitrate.


Assuntos
Dióxido de Carbono/toxicidade , Peixes-Gato/metabolismo , Nitritos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Tamanho Corporal , Peixes-Gato/anatomia & histologia , Peixes-Gato/sangue , Hemoglobinas/metabolismo , Metemoglobina/metabolismo , Nitritos/sangue , Oxigênio/metabolismo , Poluentes Químicos da Água/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA