Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260536

RESUMO

Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.

2.
ArXiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38259349

RESUMO

Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.

3.
Nat Microbiol ; 8(9): 1695-1705, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580592

RESUMO

Many biogeochemical functions involve bacteria utilizing solid substrates. However, little is known about the coordination of bacterial growth with the kinetics of attachment to and detachment from such substrates. In this quantitative study of Vibrio sp. 1A01 growing on chitin particles, we reveal the heterogeneous nature of the exponentially growing culture comprising two co-existing subpopulations: a minority replicating on chitin particles and a non-replicating majority which was planktonic. This partition resulted from a high rate of cell detachment from particles. Despite high detachment, sustained exponential growth of cells on particles was enabled by the enrichment of extracellular chitinases excreted and left behind by detached cells. The 'inheritance' of these chitinases sustains the colonizing subpopulation despite its reduced density. This simple mechanism helps to circumvent a trade-off between growth and dispersal, allowing particle-associated marine heterotrophs to explore new habitats without compromising their fitness on the habitat they have already colonized.


Assuntos
Quitinases , Vibrio , Quitina , Quitinases/genética
4.
Nat Commun ; 14(1): 4161, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443156

RESUMO

Quantifying the contribution of individual molecular components to complex cellular processes is a grand challenge in systems biology. Here we establish a general theoretical framework (Functional Decomposition of Metabolism, FDM) to quantify the contribution of every metabolic reaction to metabolic functions, e.g. the synthesis of biomass building blocks. FDM allowed for a detailed quantification of the energy and biosynthesis budget for growing Escherichia coli cells. Surprisingly, the ATP generated during the biosynthesis of building blocks from glucose almost balances the demand from protein synthesis, the largest energy expenditure known for growing cells. This leaves the bulk of the energy generated by fermentation and respiration unaccounted for, thus challenging the common notion that energy is a key growth-limiting resource. Moreover, FDM together with proteomics enables the quantification of enzymes contributing towards each metabolic function, allowing for a first-principle formulation of a coarse-grained model of global protein allocation based on the structure of the metabolic network.


Assuntos
Metabolismo Energético , Proteínas , Fermentação , Proteínas/metabolismo , Redes e Vias Metabólicas , Escherichia coli/metabolismo
5.
Nat Commun ; 14(1): 3165, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258505

RESUMO

Metabolic cross-feeding plays vital roles in promoting ecological diversity. While some microbes depend on exchanges of essential nutrients for growth, the forces driving the extensive cross-feeding needed to support the coexistence of free-living microbes are poorly understood. Here we characterize bacterial physiology under self-acidification and establish that extensive excretion of key metabolites following growth arrest provides a collaborative, inter-species mechanism of stress resistance. This collaboration occurs not only between species isolated from the same community, but also between unrelated species with complementary (glycolytic vs. gluconeogenic) modes of metabolism. Cultures of such communities progress through distinct phases of growth-dilution cycles, comprising of exponential growth, acidification-triggered growth arrest, collaborative deacidification, and growth recovery, with each phase involving different combinations of physiological states of individual species. Our findings challenge the steady-state view of ecosystems commonly portrayed in ecological models, offering an alternative dynamical view based on growth advantages of complementary species in different phases.


Assuntos
Ecossistema , Modelos Biológicos , Glicólise , Fenômenos Fisiológicos Bacterianos , Gravitação
6.
mSystems ; 8(2): e0037722, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36853050

RESUMO

While Vibrio splendidus is best known as an opportunistic pathogen in oysters, Vibrio splendidus strain 1A01 was first identified as an early colonizer of synthetic chitin particles incubated in seawater. To gain a better understanding of its metabolism, a genome-scale metabolic model (GSMM) of V. splendidus 1A01 was reconstructed. GSMMs enable us to simulate all metabolic reactions in a bacterial cell using flux balance analysis. A draft model was built using an automated pipeline from BioCyc. Manual curation was then performed based on experimental data, in part by gap-filling metabolic pathways and tailoring the model's biomass reaction to V. splendidus 1A01. The challenges of building a metabolic model for a marine microorganism like V. splendidus 1A01 are described. IMPORTANCE A genome-scale metabolic model of V. splendidus 1A01 was reconstructed in this work. We offer solutions to the technical problems associated with model reconstruction for a marine bacterial strain like V. splendidus 1A01, which arise largely from the high salt concentration found in both seawater and culture media that simulate seawater.


Assuntos
Ostreidae , Vibrio , Animais , Vibrio/genética , Água do Mar/microbiologia , Ostreidae/microbiologia
7.
Nat Microbiol ; 8(2): 347-359, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737588

RESUMO

Bacterial fitness depends on adaptability to changing environments. In rich growth medium, which is replete with amino acids, Escherichia coli primarily expresses protein synthesis machineries, which comprise ~40% of cellular proteins and are required for rapid growth. Upon transition to minimal medium, which lacks amino acids, biosynthetic enzymes are synthesized, eventually reaching ~15% of cellular proteins when growth fully resumes. We applied quantitative proteomics to analyse the timing of enzyme expression during such transitions, and established a simple positive relation between the onset time of enzyme synthesis and the fractional enzyme 'reserve' maintained by E. coli while growing in rich media. We devised and validated a coarse-grained kinetic model that quantitatively captures the enzyme recovery kinetics in different pathways, solely on the basis of proteomes immediately preceding the transition and well after its completion. Our model enables us to infer regulatory strategies underlying the 'as-needed' gene expression programme adopted by E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteoma/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas , Aminoácidos/metabolismo
8.
Nat Rev Microbiol ; 21(5): 327-342, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36376406

RESUMO

Networks of molecular regulators are often the primary objects of focus in the study of gene regulation, with the machinery of protein synthesis tacitly relegated to the background. Shifting focus to the constraints imposed by the allocation of protein synthesis flux reveals surprising ways in which the actions of molecular regulators are shaped by physiological demands. Using carbon catabolite repression as a case study, we describe how physiological constraints are sensed through metabolic fluxes and how flux-controlled regulation gives rise to simple empirical relations between protein levels and the rate of cell growth.


Assuntos
Bactérias , Proteoma , Proteoma/genética , Proteoma/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos , Biossíntese de Proteínas , Regulação Bacteriana da Expressão Gênica , Carbono/metabolismo
9.
Science ; 378(6624): eabk2066, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36480614

RESUMO

Protein concentrations are set by a complex interplay between gene-specific regulatory processes and systemic factors, including cell volume and shared gene expression machineries. Elucidating this interplay is crucial for discerning and designing gene regulatory systems. We quantitatively characterized gene-specific and systemic factors that affect transcription and translation genome-wide for Escherichia coli across many conditions. The results revealed two design principles that make regulation of gene expression insulated from concentrations of shared machineries: RNA polymerase activity is fine-tuned to match translational output, and translational characteristics are similar across most messenger RNAs (mRNAs). Consequently, in bacteria, protein concentration is set primarily at the promoter level. A simple mathematical formula relates promoter activities and protein concentrations across growth conditions, enabling quantitative inference of gene regulation from omics data.


Assuntos
Escherichia coli , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro , Biossíntese de Proteínas/genética , RNA Bacteriano/genética , DNA Bacteriano/genética , Escherichia coli/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
10.
Proc Natl Acad Sci U S A ; 119(37): e2110342119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067284

RESUMO

To swim and navigate, motile bacteria synthesize a complex motility machinery involving flagella, motors, and a sensory system. A myriad of studies has elucidated the molecular processes involved, but less is known about the coordination of motility expression with cellular physiology: In Escherichia coli, motility genes are strongly up-regulated in nutrient-poor conditions compared to nutrient-replete conditions; yet a quantitative link to cellular motility has not been developed. Here, we systematically investigated gene expression, swimming behavior, cell growth, and available proteomics data across a broad spectrum of exponential growth conditions. Our results suggest that cells up-regulate the expression of motility genes at slow growth to compensate for reduction in cell size, such that the number of flagella per cell is maintained across conditions. The observed four or five flagella per cell is the minimum number needed to keep the majority of cells motile. This simple regulatory objective allows E. coli cells to remain motile across a broad range of growth conditions, while keeping the biosynthetic and energetic demands to establish and drive the motility machinery at the minimum needed. Given the strong reduction in flagella synthesis resulting from cell size increases at fast growth, our findings also provide a different physiological perspective on bacterial cell size control: A larger cell size at fast growth is an efficient strategy to increase the allocation of cellular resources to the synthesis of those proteins required for biomass synthesis and growth, while maintaining processes such as motility that are only needed on a per-cell basis.


Assuntos
Quimiotaxia , Proteínas de Escherichia coli , Escherichia coli , Quimiotaxia/genética , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica
11.
Proc Natl Acad Sci U S A ; 119(20): e2201585119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35544692

RESUMO

Many cellular activities in bacteria are organized according to their growth rate. The notion that ppGpp measures the cell's growth rate is well accepted in the field of bacterial physiology. However, despite decades of interrogation and the identification of multiple molecular interactions that connects ppGpp to some aspects of cell growth, we lack a system-level, quantitative picture of how this alleged "measurement" is performed. Through quantitative experiments, we show that the ppGpp pool responds inversely to the rate of translational elongation in Escherichia coli. Together with its roles in inhibiting ribosome biogenesis and activity, ppGpp closes a key regulatory circuit that enables the cell to perceive and control the rate of its growth across conditions. The celebrated linear growth law relating the ribosome content and growth rate emerges as a consequence of keeping a supply of ribosome reserves while maintaining elongation rate in slow growth conditions. Further analysis suggests the elongation rate itself is detected by sensing the ratio of dwelling and translocating ribosomes, a strategy employed to collapse the complex, high-dimensional dynamics of the molecular processes underlying cell growth to perceive the physiological state of the whole.


Assuntos
Escherichia coli , Guanosina Tetrafosfato , Elongação Traducional da Cadeia Peptídica , Ribossomos , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Guanosina Tetrafosfato/metabolismo , Ribossomos/metabolismo
12.
Nat Commun ; 13(1): 1657, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351873

RESUMO

Sinking particulate organic carbon out of the surface ocean sequesters carbon on decadal to millennial timescales. Predicting the particulate carbon flux is therefore critical for understanding both global carbon cycling and the future climate. Microbes play a crucial role in particulate organic carbon degradation, but the impact of depth-dependent microbial dynamics on ocean-scale particulate carbon fluxes is poorly understood. Here we scale-up essential features of particle-associated microbial dynamics to understand the large-scale vertical carbon flux in the ocean. Our model provides mechanistic insight into the microbial contribution to the particulate organic carbon flux profile. We show that the enhanced transfer of carbon to depth can result from populations struggling to establish colonies on sinking particles due to diffusive nutrient loss, cell detachment, and mortality. These dynamics are controlled by the interaction between multiple biotic and abiotic factors. Accurately capturing particle-microbe interactions is essential for predicting variability in large-scale carbon cycling.


Assuntos
Ciclo do Carbono , Água do Mar , Carbono/metabolismo
13.
Mol Syst Biol ; 17(12): e10597, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928547

RESUMO

To respond to fluctuating conditions, microbes typically need to synthesize novel proteins. As this synthesis relies on sufficient biosynthetic precursors, microbes must devise effective response strategies to manage depleting precursors. To better understand these strategies, we investigate the active response of Escherichia coli to changes in nutrient conditions, connecting transient gene expression to growth phenotypes. By synthetically modifying gene expression during changing conditions, we show how the competition by genes for the limited protein synthesis capacity constrains cellular response. Despite this constraint cells substantially express genes that are not required, trapping them in states where precursor levels are low and the genes needed to replenish the precursors are outcompeted. Contrary to common modeling assumptions, our findings highlight that cells do not optimize growth under changing environments but rather exhibit hardwired response strategies that may have evolved to promote fitness in their native environment. The constraint and the suboptimality of the cellular response uncovered provide a conceptual framework relevant for many research applications, from the prediction of evolution to the improvement of gene circuits in biotechnology.


Assuntos
Bactérias , Escherichia coli , Escherichia coli/genética , Fenótipo , Alocação de Recursos
14.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819366

RESUMO

Bacterial cells navigate their environment by directing their movement along chemical gradients. This process, known as chemotaxis, can promote the rapid expansion of bacterial populations into previously unoccupied territories. However, despite numerous experimental and theoretical studies on this classical topic, chemotaxis-driven population expansion is not understood in quantitative terms. Building on recent experimental progress, we here present a detailed analytical study that provides a quantitative understanding of how chemotaxis and cell growth lead to rapid and stable expansion of bacterial populations. We provide analytical relations that accurately describe the dependence of the expansion speed and density profile of the expanding population on important molecular, cellular, and environmental parameters. In particular, expansion speeds can be boosted by orders of magnitude when the environmental availability of chemicals relative to the cellular limits of chemical sensing is high. Analytical understanding of such complex spatiotemporal dynamic processes is rare. Our analytical results and the methods employed to attain them provide a mathematical framework for investigations of the roles of taxis in diverse ecological contexts across broad parameter regimes.


Assuntos
Bactérias/crescimento & desenvolvimento , Quimiotaxia/fisiologia , Movimento/fisiologia , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Fenômenos Biológicos , Proliferação de Células/fisiologia , Simulação por Computador , Modelos Biológicos , Modelos Teóricos
15.
PLoS Biol ; 19(10): e3001416, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699521

RESUMO

Much recent progress has been made to understand the impact of proteome allocation on bacterial growth; much less is known about the relationship between the abundances of the enzymes and their substrates, which jointly determine metabolic fluxes. Here, we report a correlation between the concentrations of enzymes and their substrates in Escherichia coli. We suggest this relationship to be a consequence of optimal resource allocation, subject to an overall constraint on the biomass density: For a cellular reaction network composed of effectively irreversible reactions, maximal reaction flux is achieved when the dry mass allocated to each substrate is equal to the dry mass of the unsaturated (or "free") enzymes waiting to consume it. Calculations based on this optimality principle successfully predict the quantitative relationship between the observed enzyme and metabolite abundances, parameterized only by molecular masses and enzyme-substrate dissociation constants (Km). The corresponding organizing principle provides a fundamental rationale for cellular investment into different types of molecules, which may aid in the design of more efficient synthetic cellular systems.


Assuntos
Enzimas/metabolismo , Escherichia coli/enzimologia , Cinética , Metaboloma , Especificidade por Substrato
16.
Curr Opin Microbiol ; 63: 172-178, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365153

RESUMO

Bacteria grown on a mixture of carbon substrates exhibit two utilization patterns: hierarchical utilization (HU) and simultaneous utilization (SU). How and why cells adopt these different behaviors remains poorly understood despite decades of research. Recent studies address various open questions from multiple viewpoints. From a mechanistic perspective, it was found that flux sensors play a central role in the regulation of substrate utilization, accounting for the known dependences on single-substrate growth rates, substrate concentrations, and the point where the substrate enters central metabolism. From a physiological perspective, several recent studies suggested HU or SU as growth-optimizing strategies through efficient allocation of essential proteome resources. However, other studies demonstrate that a significant fraction of the proteome is dedicated to functions apparently unnecessary for growth, casting doubt on explanations based on slight efficiency gains. From an ecological perspective, recent theoretical studies suggest that HU can help increase species diversity in bacterial communities.


Assuntos
Bactérias , Carbono , Bactérias/genética
17.
Mol Syst Biol ; 17(5): e9536, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34032011

RESUMO

Accurate measurements of cellular protein concentrations are invaluable to quantitative studies of gene expression and physiology in living cells. Here, we developed a versatile mass spectrometric workflow based on data-independent acquisition proteomics (DIA/SWATH) together with a novel protein inference algorithm (xTop). We used this workflow to accurately quantify absolute protein abundances in Escherichia coli for > 2,000 proteins over > 60 growth conditions, including nutrient limitations, non-metabolic stresses, and non-planktonic states. The resulting high-quality dataset of protein mass fractions allowed us to characterize proteome responses from a coarse (groups of related proteins) to a fine (individual) protein level. Hereby, a plethora of novel biological findings could be elucidated, including the generic upregulation of low-abundant proteins under various metabolic limitations, the non-specificity of catabolic enzymes upregulated under carbon limitation, the lack of large-scale proteome reallocation under stress compared to nutrient limitations, as well as surprising strain-dependent effects important for biofilm formation. These results present valuable resources for the systems biology community and can be used for future multi-omics studies of gene regulation and metabolic control in E. coli.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteômica/métodos , Algoritmos , Técnicas Bacteriológicas , Escherichia coli/metabolismo , Espectrometria de Massas , Estresse Fisiológico , Biologia de Sistemas , Fluxo de Trabalho
18.
Mol Syst Biol ; 17(4): e10064, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33852189

RESUMO

Microorganisms adjust metabolic activity to cope with diverse environments. While many studies have provided insights into how individual pathways are regulated, the mechanisms that give rise to coordinated metabolic responses are poorly understood. Here, we identify the regulatory mechanisms that coordinate catabolism and anabolism in Escherichia coli. Integrating protein, metabolite, and flux changes in genetically implemented catabolic or anabolic limitations, we show that combined global and local mechanisms coordinate the response to metabolic limitations. To allocate proteomic resources between catabolism and anabolism, E. coli uses a simple global gene regulatory program. Surprisingly, this program is largely implemented by a single transcription factor, Crp, which directly activates the expression of catabolic enzymes and indirectly reduces the expression of anabolic enzymes by passively sequestering cellular resources needed for their synthesis. However, metabolic fluxes are not controlled by this regulatory program alone; instead, fluxes are adjusted mostly through passive changes in the local metabolite concentrations. These mechanisms constitute a simple but effective global regulatory program that coarsely partitions resources between different parts of metabolism while ensuring robust coordination of individual metabolic reactions.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Proteínas de Escherichia coli/metabolismo , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Nature ; 584(7821): 470-474, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669712

RESUMO

The rate of cell growth is crucial for bacterial fitness and drives the allocation of bacterial resources, affecting, for example, the expression levels of proteins dedicated to metabolism and biosynthesis1,2. It is unclear, however, what ultimately determines growth rates in different environmental conditions. Moreover, increasing evidence suggests that other objectives are also important3-7, such as the rate of physiological adaptation to changing environments8,9. A common challenge for cells is that these objectives cannot be independently optimized, and maximizing one often reduces another. Many such trade-offs have indeed been hypothesized on the basis of qualitative correlative studies8-11. Here we report a trade-off between steady-state growth rate and physiological adaptability in Escherichia coli, observed when a growing culture is abruptly shifted from a preferred carbon source such as glucose to fermentation products such as acetate. These metabolic transitions, common for enteric bacteria, are often accompanied by multi-hour lags before growth resumes. Metabolomic analysis reveals that long lags result from the depletion of key metabolites that follows the sudden reversal in the central carbon flux owing to the imposed nutrient shifts. A model of sequential flux limitation not only explains the observed trade-off between growth and adaptability, but also allows quantitative predictions regarding the universal occurrence of such tradeoffs, based on the opposing enzyme requirements of glycolysis versus gluconeogenesis. We validate these predictions experimentally for many different nutrient shifts in E. coli, as well as for other respiro-fermentative microorganisms, including Bacillus subtilis and Saccharomyces cerevisiae.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Acetatos/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Divisão Celular , Escherichia coli/enzimologia , Escherichia coli/genética , Fermentação , Gluconeogênese , Glucose/metabolismo , Glicólise , Metabolômica , Modelos Biológicos , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
20.
Nat Microbiol ; 5(8): 995-1001, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424336

RESUMO

Growth laws emerging from studies of cell populations provide essential constraints on the global mechanisms that coordinate cell growth1-3. The foundation of bacterial cell cycle studies relies on two interconnected dogmas that were proposed more than 50 years ago-the Schaechter-Maaloe-Kjeldgaard growth law that relates cell mass to growth rate1 and Donachie's hypothesis of a growth-rate-independent initiation mass4. These dogmas spurred many efforts to understand their molecular bases and physiological consequences5-14. Although they are generally accepted in the fast-growth regime, that is, for doubling times below 1 h, extension of these dogmas to the slow-growth regime has not been consistently achieved. Here, through a quantitative physiological study of Escherichia coli cell cycles over an extensive range of growth rates, we report that neither dogma holds in either the slow- or fast-growth regime. In their stead, linear relations between the cell mass and the rate of chromosome replication-segregation were found across the range of growth rates. These relations led us to propose an integral-threshold model in which the cell cycle is controlled by a licensing process, the rate of which is related in a simple way to chromosomal dynamics. These results provide a quantitative basis for predictive understanding of cell growth-cell cycle relationships.


Assuntos
Ciclo Celular , Divisão Celular , Escherichia coli/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/genética , Meios de Cultura/química , Replicação do DNA , Proteínas de Escherichia coli , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA