Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317220

RESUMO

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Assuntos
Adipogenia , Ácidos Linoleicos Conjugados , Tocoferóis , Masculino , Humanos , Ratos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Distribuição Tecidual , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo
2.
Clin Chest Med ; 45(1): 71-89, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38245372

RESUMO

Sarcoidosis is a multisystem disease that most commonly affects the lungs, lymphatic system, eyes, and skin but any organ may be involved. Cutaneous sarcoidosis most commonly presents as pink-red to red-brown papules and plaques that commonly affect the head and neck. With the skin being readily accessible for evaluation and biopsy, when sarcoidosis is suspected, dermatologic evaluation may be helpful for establishing a definitive diagnosis. Treatment strategy depends on the severity and distribution of skin lesions and should incorporate patient preference and treatment considerations for other organs that may be involved.


Assuntos
Sarcoidose , Dermatopatias , Humanos , Sarcoidose/diagnóstico , Sarcoidose/terapia , Sarcoidose/patologia , Dermatopatias/diagnóstico , Dermatopatias/etiologia , Dermatopatias/terapia
3.
Acta Biomater ; 174: 331-344, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061677

RESUMO

There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1‒2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia. STATEMENT OF SIGNIFICANCE: Bacteremia-mediated sepsis poses a significant challenge in clinical practice, as there is currently no specific and effective treatment available. In our study, we have developed a novel combinatorial nanosystem to address this issue. Our nanosystem consists of neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles, enabling the simultaneous mitigation of bacteremia-associated inflammation and MRSA infection. Our nanosystem demonstrated the decreased neutrophil activation, effective inhibition of cytokine release, elimination of MRSA biofilm colonies, and reduced intracellular bacterial counts. In vivo experiments showed prolonged circulation, limited organ distribution, and increased survival rates in a mouse bacteremia model. Importantly, our nanosystem exhibited no toxicity based on comprehensive assessments.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Camundongos , Animais , Neutrófilos , Ácido Fusídico/farmacologia , Ácido Fusídico/uso terapêutico , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Taxa de Sobrevida , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/complicações , Bacteriemia/tratamento farmacológico , Modelos Animais de Doenças , Citocinas/farmacologia , Quimiocinas
4.
Int J Dermatol ; 63(5): 655-659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135676

RESUMO

BACKGROUND: Type 1 (Th1) and Type 2 (Th2) immunity have both been implicated in granuloma annulare (GA). To what extent these pathways contribute to clinical/histologic heterogeneity and/or distinct disease endotypes remains unexplored. METHODS: We retrospectively analyzed 30 GA biopsies with either palisaded or interstitial histology with and without eosinophils. We performed RNA in situ hybridization to assess how markers of Type 1 (interferon gamma), Type 2 (interleukin [IL]4, IL13, IL5), and Type 3 (IL17A) immunity in GA compared with canonical inflammatory disorders and whether markers correlated with histology. We analyzed another cohort of 14 patients who had multiple biopsies across anatomic space and time for individual conservation of histologic features. RESULTS: Interferon (IFN)G staining is highest in GA relative to other cytokines. Type 2 cytokine staining is less prominent, with IL4 increased in interstitial pattern cases. Eosinophils did not correlate with Type 2 markers. Patients with multiple biopsies display intrapatient variability in histology. CONCLUSION: Type 1 inflammation predominates over Type 2 inflammation in GA irrespective of histologic pattern. Distinct disease endotypes were not detected.


Assuntos
Eosinófilos , Granuloma Anular , Humanos , Estudos Retrospectivos , Granuloma Anular/patologia , Granuloma Anular/imunologia , Granuloma Anular/diagnóstico , Masculino , Feminino , Eosinófilos/patologia , Eosinófilos/imunologia , Pessoa de Meia-Idade , Biópsia , Adulto , Interferon gama , Interleucina-4 , Células Th2/imunologia , Interleucina-17/metabolismo , Interleucina-5 , Células Th1/imunologia , Idoso , Coloração e Rotulagem , Citocinas/metabolismo , Pele/patologia , Pele/imunologia , Adulto Jovem , Hibridização In Situ
6.
JID Innov ; 3(5): 100220, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719661

RESUMO

Inflammatory cutaneous granulomatous diseases, including granuloma annulare, cutaneous sarcoidosis, and necrobiosis lipoidica, are distinct diseases unified by the hallmark of macrophage accumulation and activation in the skin. There are currently no Food and Drug Administration-approved therapies for these conditions except prednisone and repository corticotropin injection for pulmonary sarcoidosis. Treatment of these diseases has generally been guided by low-quality evidence and may involve broadly immunomodulatory medications. Development of new treatments has in part been limited by an incomplete understanding of disease pathogenesis. Recently, there has been substantial progress in better understanding the molecular pathogenesis of these disorders, opening the door for therapeutic innovation. Likewise, reported outcomes of treatment with immunologically targeted therapies may offer insights into disease pathogenesis. In this systematic review, we summarize progress in deciphering the pathomechanisms of these disorders and discuss this in the context of emerging evidence on the use of molecularly targeted therapies in treatment of these diseases.

7.
Drug Deliv ; 30(1): 2245169, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585684

RESUMO

Phototherapy is a conventional antipsoriatic approach based on oxygen-relevant generation of oxidative stress to inhibit keratinocyte hyperproliferation. However, this therapy can be restricted due to local hypoxia in psoriatic lesions. The generation of alkyl radicals is oxygen-independent and suppresses hyperproliferation. Herein, we established alkyl radical-based therapy to treat psoriatic hyperplasia. Because alkyl radicals are short-lived compounds, we loaded 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) as a precursor of alkyl radicals into the chitosan nanogels to improve stability. The present study presented a topically applied nanogel that led to a pH-responsive network sensitive to skin pH. This pH responsiveness of the nanogels allowed fast alkyl radical release in the target site. The physicochemical properties of the prepared nanogels were determined through size, zeta potential, scanning electron microscopy, and absorption spectroscopy. The antipsoriatic activity was examined with keratinocyte- and animal-based studies. The nanogels displayed a smooth and spherical morphology with a hydrodynamic diameter of 215 nm. This size was largely increased as the environmental pH increased to 6. The nanogels heated at 44 °C produced alkyl radicals to induce keratinocyte death through the necrosis pathway. Bioimaging demonstrated that topically applied nanogels could deliver alkyl radicals into the epidermis. This targeting was accompanied by the accumulation of free radicals in the epidermis according to the 2',7'-dichlorodihydrofluorescein diacetate assay. The imiquimod-stimulated psoriasiform animal model indicated a remarkable reduction in erythema, scaling, and overexpressed cytokines upon topical treatment of the nanogels. The transepidermal water loss of the psoriasiform skin was inhibited from 51.7 to 27.0 g/m2/h, suggesting barrier function recovery by the nanocarriers. The nanogels lowered hyperplasia by decreasing the epidermal thickness from 212 to 89 µm. The incorporation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) as a pH-sensitive fluorescence dye in the nanogels could be used to diagnose the severity of the psoriasiform plaque due to the stronger fluorescence of HPTS in skin with lower pH (psoriasiform skin pH = 4.4) than in healthy skin (pH = 4.9). It was possible to deliver the prepared nanogels into the epidermis to restrain hyperplasia without causing cutaneous irritation.


Assuntos
Psoríase , Pele , Animais , Nanogéis , Hiperplasia/tratamento farmacológico , Hiperplasia/patologia , Pele/patologia , Psoríase/tratamento farmacológico , Concentração de Íons de Hidrogênio , Oxigênio
8.
Expert Opin Drug Deliv ; 20(6): 757-772, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088710

RESUMO

INTRODUCTION: RNA interference (RNAi) has demonstrated great potential in treating skin-related diseases, as small interfering RNA (siRNA) can efficiently silence specific genes. The design of skin delivery systems for siRNA is important to protect the nucleic acid while facilitating both skin targeting and cellular ingestion. Entrapment of siRNA into nanocarriers can accomplish these aims, contributing to improved targeting, controlled release, and increased transfection. AREAS COVERED: The siRNA-based nanotherapeutics for treating skin disorders are summarized. First, the mechanisms of RNAi are presented, followed by the introduction of challenges for skin therapy. Then, the different nanoparticle types used for siRNA skin delivery are described. Subsequently, we introduce the mechanisms of how nanoparticles enhance siRNA skin penetration. Finally, the current investigations associated with nanoparticulate siRNA application in skin disease management are reviewed. EXPERT OPINION: The potential application of nanotherapeutic RNAi allows for a novel skin application strategy. Further clinical studies are required to confirm the findings in the cell-based or animal experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for translation to commercialization. siRNA delivery by nanocarriers should be optimized to attain cutaneous targeting without the risk of toxicity.


Assuntos
Nanopartículas , Dermatopatias , Animais , RNA Interferente Pequeno , Reprodutibilidade dos Testes , Interferência de RNA , Dermatopatias/tratamento farmacológico , Transfecção
9.
Mech Ageing Dev ; 210: 111761, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496171

RESUMO

Reversing or slowing down the skin aging process is one of the most intriguing areas of focus across the social and scientific communities around the world. While aging is considered a universal and inevitable natural process of physiological decline, the aging of the skin is the most apparent visual representation of an individual's health. Aging skin may be objectively defined by epidermal thinning; increased transepidermal water loss; decreased cutaneous barrier function; loss of elasticity, laxity, and textured appearance; and gradual deterioration of the epidermal immune environment. As the largest structure of the immune system and of the body as a whole, the skin is the most vulnerable barrier of defense against the environment. The skin reflects an individual's exposures, lifestyle habits, and overall health. From an immunological perspective, cytokines and chemokines act as a central character in the communicating of the immunity in skin aging. These cell signaling proteins serve as the intercellular communication link. This review aims to elucidate how cell-cell crosstalk through cytokines and chemokines, and the interplay between host cells, infiltrating immune cells, and exogenous factors contribute to the overall aging skin.


Assuntos
Citocinas , Envelhecimento da Pele , Citocinas/metabolismo , Quimiocinas/metabolismo , Pele/metabolismo
10.
Mol Pharm ; 18(1): 148-157, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33253579

RESUMO

Biological drug products are formulated with excipients to maintain stability over the shelf life of the product. Surfactants are added to the drug product to stabilize air-water interfaces known to induce protein aggregation. Early formulation development is focused on maintaining protein conformation and colloidal stability over the course of the drug product shelf life but rarely considers stability through dose preparation and administration. Specifically, intravenous (IV) bag preparation exposes the therapeutic protein to a different solution environment concurrently diluting the stabilizing excipients that had been added to the drug product formulation. Mixing in IV bags can generate dynamic changes in the air-water interfacial area known to cause protein aggregation if not sufficiently protected. Therefore, understanding the surfactant requirements for drug product end-to-end stability in early formulation development provides critical information for a right-first-time approach to drug product formulation and robust clinical preparation. The goal of these studies was to understand if interfacial properties of proteins could predict surfactant formulation requirements for end-to-end stability. Specifically, the interfacial properties of five proteins were measured in 0.9% saline and 5% dextrose. Furthermore, shaking studies were conducted to identify the minimum surfactant concentration required to prevent subvisible and visible particle formulation in each diluent. The impact of surfactant type and concentration on particle generation and size was explored. A mathematical model was generated to predict the minimum surfactant concentration required to prevent interface-driven aggregation in each diluent based on the change in surface pressure upon exposure of the protein to the interface. The model was tested under typical IV-preparation conditions with experimental output closely matching the model prediction. By employing this model and better understanding the role of surfactants in interfacial stability, drug product development can generate robust end-to-end large molecule formulations across shelf life, dose preparation, and administration.


Assuntos
Agregados Proteicos/efeitos dos fármacos , Tensão Superficial/efeitos dos fármacos , Tensoativos/química , Adsorção/efeitos dos fármacos , Anticorpos Monoclonais/química , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Excipientes/química , Polissorbatos/química , Conformação Proteica/efeitos dos fármacos , Água/química
11.
Nanoscale ; 11(25): 12358-12369, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31215944

RESUMO

Freestanding, contiguous, and translucent polypyrrole nanonets are prepared within 90 minutes at room temperature in Petri dishes by exposing aqueous oxidant to static pyrrole vapor. The nanonets are 150 nm thick, with variable densities depending on polymerization time. The nanonets maintain a low sheet resistance of 29.1 Ω□-1 at 30% optical transmission, and 423 Ω□-1 at 50% transmission. A mechanism is proposed in which polypyrrole islands serve as nucleation sites for further surface-tension constrained polymerization. The nanonets exhibit a high degree of electrochemical dopability (over 24%). Nets are robust and processable, as evidenced by their ability to drape over 2D and 3D substrates. Large areas of films are manually twisted into highly porous sub-millimeter diameter conductive wires, able to recover their two-dimensional structure upon immersion in solvents. Moreover, nanonets exhibit a high specific capacitance of 518 F g-1 for a 1.2 V potential window. Electrochemical capacitors fabricated with nanonet active electrodes show a high energy density of 9.86 W h kg-1 at 1775 W kg-1 when charged to 0.8 V.

12.
ACS Appl Mater Interfaces ; 9(47): 41496-41504, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29111644

RESUMO

We introduce a novel condensing vapor phase polymerization (CVPP) strategy for depositing microtubes of the conducting polymer polypyrrole; these serve as one-dimensional hollow microstructures for storing electrochemical energy. In CVPP, water droplets are structure-directing templates for polypyrrole microtubes. Water vapor condensation and polymerization occur simultaneously-conformal coatings of microtubes deposit on porous substrates such as hard carbon fiber paper or glass fiber filter paper. A mechanistic evolution of the microtubular morphology is proposed and tested based on the mass transport of water and monomer vapors as well as on the reaction stoichiometry. A coating of PPy microtubes is characterized by a high reversible capacitance of 342 F g-1 at 5 mV s-1 throughout 5000 cycles of cyclic voltammetry and a low sheet resistance of 70.2 Ω â–¡-1. The open tubular structure is controlled in situ during synthesis and leads to electrodes that exhibit electrochemical stability at high scanning rates up to 250 mV s-1 retaining all stored charge, even after extensive cycling at 25 mV s-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA