Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nanoscale ; 16(41): 19469-19476, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39350689

RESUMO

The impact ionization process offers advantages in achieving low-power and high-speed switching in transistors and also provides high internal gain for photodetectors. We investigate the density dependence of both electron- and hole-initiated impact ionization in WSe2. We observe a record-low critical electric field for impact ionization and a large multiplication factor in WSe2 when the impact ionization is initiated by holes, particularly near a charge-neutral point. As the carrier density increases, the impact ionization decreases, which is attributed to the increase in Fermi energy and the weakening of the carrier-carrier interaction by increasing the screening effect. To understand the role of screening effects on the impact ionization, we examine the carrier scatterings of several scattering sources and the rate of change of the channel current with respect to the drain source voltage, ΔIDS/ΔVDS. We obtain the optimal conditions for impact ionization and apply these findings to fabricate avalanche photodetectors (APDs). This study proposes that the performance of low-power transistors or APDs, utilizing impact ionization, can be enhanced under optimized conditions by examining and controlling specific external parameters.

2.
Nat Commun ; 15(1): 5561, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956100

RESUMO

Structural deformation modifies the bandgap, exciton fine structure and phonon energy of semiconductors, providing an additional knob to control their optical properties. The impact can be exploited in colloidal semiconductor quantum dots (QDs), wherein structural stresses can be imposed in three dimensions while defect formation is suppressed by controlling surface growth kinetics. Yet, the control over the structural deformation of QDs free from optically active defects has not been reached. Here, we demonstrate strain-graded CdSe-ZnSe core-shell QDs with compositionally abrupt interface by the coherent pseudomorphic heteroepitaxy. Resulting QDs tolerate mutual elastic deformation of varying magnitudes at the interface with high structural fidelity, allowing for spectrally stable and pure emission of photons at accelerated rates with near unity luminescence efficiency. We capitalize on the asymmetric strain effect together with the quantum confinement effect to expand emission envelope of QDs spanning the entire visible region and exemplify their use in photonic applications.

3.
ACS Nano ; 18(19): 12333-12340, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688009

RESUMO

In this study, we investigated the optical properties of a transition metal dichalcogenide (TMD) substrate via Mie-scattering-induced surface analysis (MISA). Employing near-field optical microscopy and finite-difference time-domain (FDTD) simulations, we systemically prove and directly visualize the Mie scattering of superspherical gold nanoparticles (s-AuNPs) at the nanoscale. Molybdenum disulfide substrates exhibited optical isotropy, while rhenium disulfide (ReS2) substrates showed anisotropic behavior attributed to the interaction with incident light's electric field. Our study revealed substantial anisotropic trends in Mie scattering, particularly in the near-infrared energy range, with ReS2 exhibiting more pronounced spectral and angular responses in satellite peaks. Our results emphasize the application of Mie scattering, exploring the optical properties of substrates and contributing to a deeper understanding of nanoscale light-matter interactions.

4.
Adv Mater ; : e2312250, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300222

RESUMO

The morphology of heterostructured semiconductor nanocrystals (h-NCs) dictates the spatial distribution of charge carriers and their recombination dynamics and/or transport, which are the main performance indicators of photonic applications utilizing h-NCs. The inability to control the morphology of heterovalent III-V/II-VI h-NCs composed of heavy-metal-free elements hinders their practical use. As a case study of III-V/II-VI h-NCs, the growth control of ZnSe epilayers on InP NCs is demonstrated here. The anisotropic morphology in InP/ZnSe h-NCs is attributed to the facet-dependent energy costs for the growth of ZnSe epilayers on different facets of InP NCs, and effective chemical means for controlling the growth rates of ZnSe on different surface planes are demonstrated. Ultimately, this article capitalizes on the controlled morphology of InP/ZnSe h-NCs to expand their photophysical characteristics from stable and pure emission to environment-sensitive one, which will facilitate their use in a variety of photonic applications.

5.
Nat Commun ; 14(1): 3779, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355655

RESUMO

Colloidal Ag(In,Ga)S2 nanocrystals (AIGS NCs) with the band gap tunability by their size and composition within visible range have garnered surging interest. High absorption cross-section and narrow emission linewidth of AIGS NCs make them ideally suited to address the challenges of Cd-free NCs in wide-ranging photonic applications. However, AIGS NCs have shown relatively underwhelming photoluminescence quantum yield (PL QY) to date, primarily because coherent heteroepitaxy has not been realized. Here, we report the heteroepitaxy for AIGS-AgGaS2 (AIGS-AGS) core-shell NCs bearing near-unity PL QYs in almost full visible range (460 to 620 nm) and enhanced photochemical stability. Key to the successful growth of AIGS-AGS NCs is the use of the Ag-S-Ga(OA)2 complex, which complements the reactivities among cations for both homogeneous AIGS cores in various compositions and uniform AGS shell growth. The heteroepitaxy between AIGS and AGS results in the Type I heterojunction that effectively confines charge carriers within the emissive core without optically active interfacial defects. AIGS-AGS NCs show higher extinction coefficient and narrower spectral linewidth compared to state-of-the-art heavy metal-free NCs, prompting their immediate use in practicable applications including displays and luminescent solar concentrators (LSCs).


Assuntos
Luminescência , Nanopartículas , Fótons , Software
7.
Nano Converg ; 10(1): 13, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932269

RESUMO

Carrier multiplication via impact ionization in two-dimensional (2D) layered materials is a very promising process for manufacturing high-performance devices because the multiplication has been reported to overcome thermodynamic conversion limits. Given that 2D layered materials exhibit highly anisotropic transport properties, understanding the directionally-dependent multiplication process is necessary for device applications. In this study, the anisotropy of carrier multiplication in the 2D layered material, WSe2, is investigated. To study the multiplication anisotropy of WSe2, both lateral and vertical WSe2 field effect transistors (FETs) are fabricated and their electrical and transport properties are investigated. We find that the multiplication anisotropy is much bigger than the transport anisotropy, i.e., the critical electric field (ECR) for impact ionization of vertical WSe2 FETs is approximately ten times higher than that of lateral FETs. To understand the experimental results we calculate the average energy of the carriers in the proposed devices under strong electric fields by using the Monte Carlo simulation method. The calculated average energy is strongly dependent on the transport directions and we find that the critical electric field for impact ionization in vertical devices is approximately one order of magnitude larger than that of the lateral devices, consistent with experimental results. Our findings provide new strategies for the future development of low-power electric and photoelectric devices.

8.
J Phys Chem Lett ; 13(49): 11464-11472, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36469328

RESUMO

ZnSe1-XTeX nanocrystals (NCs) are promising photon emitters with tunable emission across the violet to orange range and near-unity quantum yields. However, these NCs suffer from broad emission line widths and multiple exciton decay dynamics, which discourage their practicable use. Here, we explore the excitonic states in ZnSe1-XTeX NCs and their photophysical characteristics in relation to the morphological inhomogeneity of highly mismatched alloys. Ensemble and single-dot spectroscopic analysis of a series of ZnSe1-XTeX NC samples with varying Te ratios coupled with computational calculations shows that, due to the distinct electronegativity between Se and Te, nearest-neighbor Te pairs in ZnSe1-XTeX alloys create localized hole states spectrally distributed approximately 130 meV above the 1Sh level of homogeneous ZnSe1-XTeX NCs. This forms spatially separated excitons (delocalized electron and localized hole in trap), accounting for both inhomogeneous and homogeneous line width broadening with delayed recombination dynamics. Our results identify photophysical characteristics of excitonic states in NCs made of highly mismatched alloys and provide future research directions with potential implications for photonic applications.

9.
Nat Commun ; 13(1): 6076, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241618

RESUMO

The Fermi-Dirac distribution of carriers and the drift-diffusion mode of transport represent two fundamental barriers towards the reduction of the subthreshold slope (SS) and the optimization of the energy consumption of field-effect transistors. In this study, we report the realization of steep-slope impact ionization field-effect transistors (I2FETs) based on a gate-controlled homogeneous WSe2 lateral junction. The devices showed average SS down to 2.73 mV/dec over three decades of source-drain current and an on/off ratio of ~106 at room temperature and low bias voltages (<1 V). We determined that the lucky-drift mechanism of carriers is valid in WSe2, allowing our I2FETs to have high impact ionization coefficients and low SS at room temperature. Moreover, we fabricated a logic inverter based on a WSe2 I2FET and a MoS2 FET, exhibiting an inverter gain of 73 and almost ideal noise margin for high- and low-logic states. Our results provide a promising approach for developing functional devices as front runners for energy-efficient electronic device technology.

10.
Nat Nanotechnol ; 17(9): 952-958, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35953539

RESUMO

Colloidal quantum dots (QDs) stand at the forefront of a variety of photonic applications given their narrow spectral bandwidth and near-unity luminescence efficiency. However, integrating luminescent QD films into photonic devices without compromising their optical or transport characteristics remains challenging. Here we devise a dual-ligand passivation system comprising photocrosslinkable ligands and dispersing ligands to enable QDs to be universally compatible with solution-based patterning techniques. The successful control over the structure of both ligands allows the direct patterning of dual-ligand QDs on various substrates using commercialized photolithography (i-line) or inkjet printing systems at a resolution up to 15,000 pixels per inch without compromising the optical properties of the QDs or the optoelectronic performance of the device. We demonstrate the capabilities of our approach for QD-LED applications. Our approach offers a versatile way of creating various structures of luminescent QDs in a cost-effective and non-destructive manner, and could be implemented in nearly all commercial photonics applications where QDs are used.

11.
Adv Mater ; 34(15): e2108425, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34913205

RESUMO

Motivated by the high expectation for efficient electrostatic modulation of charge transport at very low voltages, atomically thin 2D materials with a range of bandgaps are investigated extensively for use in future semiconductor devices. However, researchers face formidable challenges in 2D device processing mainly originated from the out-of-plane van der Waals (vdW) structure of ultrathin 2D materials. As major challenges, untunable Schottky barrier height and the corresponding strong Fermi level pinning (FLP) at metal interfaces are observed unexpectedly with 2D vdW materials, giving rise to unmodulated semiconductor polarity, high contact resistance, and lowered device mobility. Here, FLP observed from recently developed 2D semiconductor devices is addressed differently from those observed from conventional semiconductor devices. It is understood that the observed FLP is attributed to inefficient doping into 2D materials, vdW gap present at the metal interface, and hybridized compounds formed under contacting metals. To provide readers with practical guidelines for the design of 2D devices, the impact of FLP occurring in 2D semiconductor devices is further reviewed by exploring various origins responsible for the FLP, effects of FLP on 2D device performances, and methods for improving metallic contact to 2D materials.

12.
Nat Mater ; 21(2): 246-252, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34795403

RESUMO

The potential profile and the energy level offset of core-shell heterostructured nanocrystals (h-NCs) determine the photophysical properties and the charge transport characteristics of h-NC solids. However, limited material choices for heavy metal-free III-V-II-VI h-NCs pose challenges in comprehensive control of the potential profile. Herein, we present an approach to such a control by steering dipole densities at the interface of III-V-II-VI h-NCs. The controllable heterovalency at the interface is responsible for interfacial dipole densities that result in the vacuum-level shift, providing an additional knob for the control of optical and electrical characteristics of h-NCs. The synthesis of h-NCs with atomic precision allows us to correlate interfacial dipole moments with the NCs' photochemical stability and optoelectronic performance.

13.
ACS Nano ; 15(12): 20332-20340, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34866380

RESUMO

The state-of-the-art quantum dot (QD) based light-emitting diodes (QD-LEDs) reach near-unity internal quantum efficiency thanks to organic materials used for efficient hole transportation within the devices. However, toward high-current-density LEDs, such as augmented reality, virtual reality, and head-up display, thermal vulnerability of organic components often results in device instability or breakdown. The adoption of a thermally robust inorganic hole transport layer (HTL), such as NiO, becomes a promising alternative, but the large energy offset between the NiO HTL and the QD emissive layer impedes the efficient operation of QD-LEDs. Here, we demonstrate bright and stable all-inorganic QD-LEDs by steering the orientation of molecular dipoles at the surfaces of both the NiO HTL and QDs. We show that the molecular dipoles not only induce the vacuum level shift that helps alleviate the energy offset between the NiO HTL and QDs but also passivate the surface trap states of the NiO HTL that act as nonradiative recombination centers. With the facilitated hole injection into QDs and suppressed electron leakage toward trap sites in the NiO HTL, we achieve all-inorganic QD-LEDs with high external quantum efficiency (6.5% at peak) and brightness (peak luminance exceeding 77 000 cd/m2) along with prolonged operational stability. The approaches and results in the present study provide the design principles for high-performance all-inorganic QD-LEDs suited for next-generation light sources.

14.
ACS Nano ; 14(11): 16036-16045, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33169988

RESUMO

The limitation on signal processes implementable using conventional semiconductor circuits based on electric signals necessitates a revolutionary change in device structures such that they can exploit photons or light. Herein, we introduce optoelectric logic circuits that convert optical signals with different wavelengths corresponding to different colors into binary electric signals. Such circuits are assembled using unit devices in which the electric current through the semiconductor channel is effectively gated by lights of different colors. Color-selective optical modulation of the device is cleverly achieved using graphene decorated with different organic dyes as the electrode of a Schottky diode structure. The drastic change in the electrode work function under illumination induces a change in the height of the Schottky barrier formed at the electrode/semiconductor junction and consequent modulation of the electric current; we term the developed device a photonic barristor. We construct logic circuits using an array of photonic barristors and demonstrate that they execute the functions of conventional NAND and NOR gates from optical input signals.

15.
ACS Nano ; 14(12): 17496-17504, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33252236

RESUMO

The charge injection imbalance into the quantum dot (QD) emissive layer of QD-based light-emitting diodes (QD-LEDs) is an unresolved issue that is detrimental to the efficiency and operation stability of devices. Herein, an integrated approach to harmonize the charge injection rates for bright and stable QD-LEDs is proposed. Specifically, the electronic characteristics of the hole transport layer (HTL) is delicately designed in order to facilitate the hole injection from the HTL into QDs and confine the electron overflow toward the HTL. The well-defined exciton recombination zone by the engineered QDs and HTL results in high performance with a peak luminance exceeding 410 000 cd/m2, suppressed efficiency roll-off characteristics (ΔEQE < 5% between 200 and 200 000 cd/m2), and prolonged operational stability. The electric and optoelectronic analyses reveal the charge carrier injection mechanism at the interface between the HTL and QDs and provides the design principle of QD heterostructures and charge transport layers for high-performance QD-LEDs.

16.
ACS Nano ; 14(8): 9796-9806, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32628447

RESUMO

Sensory adaptation is an essential part of biological neural systems for sustaining human life. Using the light-induced halide phase segregation of CsPb(Br1-xIx)3 perovskite, we introduce neuromorphic phototransistors that emulate human sensory adaptation. The phototransistor based on a hybrid structure of perovskite and transition-metal dichalcogenide (TMD) emulates the sensory adaptation in response to a continuous light stimulus, similar to the neural system. The underlying mechanism for the sensory adaptation is the halide segregation of the mixed halide perovskites. The phase separation under visible-light illumination leads to the segregation of I and Br into separate iodide- and bromide-rich domains, significantly changing the photocurrent in the phototransistors. The devices are reversible upon the removal of the light stimulation, resulting in near-complete recovery of the photosensitivity before the phase segregation (sensitivity recovery of 96.65% for 5 min rest time). The proposed phototransistor based on the perovskite-TMD hybrid structure can be applied to other neuromorphic devices such as neuromorphic photonic devices, intelligent sensors, and selective light-detecting image sensors.


Assuntos
Iodetos , Molibdênio , Compostos de Cálcio , Humanos , Óxidos , Titânio
17.
Materials (Basel) ; 12(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766632

RESUMO

SnSe is considered as a promising thermoelectric (TE) material since the discovery of the record figure of merit (ZT) of 2.6 at 926 K in single crystal SnSe. It is, however, difficult to use single crystal SnSe for practical applications due to the poor mechanical properties and the difficulty and cost of fabricating a single crystal. It is highly desirable to improve the properties of polycrystalline SnSe whose TE properties are still not near to that of single crystal SnSe. In this study, in order to control the TE properties of polycrystalline SnSe, polycrystalline SnSe-SnTe solid solutions were fabricated, and the effect of the solid solution on the electrical transport and TE properties was investigated. The SnSe1-xTex samples were fabricated using mechanical alloying and spark plasma sintering. X-ray diffraction (XRD) analyses revealed that the solubility limit of Te in SnSe1-xTex is somewhere between x = 0.3 and 0.5. With increasing Te content, the electrical conductivity was increased due to the increase of carrier concentration, while the lattice thermal conductivity was suppressed by the increased amount of phonon scattering. The change of carrier concentration and electrical conductivity is explained using the measured band gap energy and the calculated band structure. The change of thermal conductivity is explained using the change of lattice thermal conductivity from the increased amount of phonon scattering at the point defect sites. A ZT of ~0.78 was obtained at 823 K from SnSe0.7Te0.3, which is an ~11% improvement compared to that of SnSe.

18.
Small ; 15(38): e1805352, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389125

RESUMO

A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron-hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal-to-noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP-Au-NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP-Au-NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W-1 at an electric field of 5 kV cm-1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W-1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low-power-consumption, high-sensitivity, and low-noise photodevice applications, which can enable high-performance optical communication and imaging systems.

19.
ACS Nano ; 13(8): 8804-8810, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31310513

RESUMO

We demonstrate the application of MXenes, metallic 2D materials of transition-metal carbides, as excellent electrode materials for photonic devices. In this study, we have fabricated an InSe-based photodetector with a Ti2CTx electrode. The photodetector with few-layer, atomically thin, Ti2CTx (MXene) electrodes shows the avalanche carrier multiplication effect, which leads to high device performance. To improve the performance of the InSe/Ti2CTx avalanche photodetector, we can pattern Ti2CTx into nanoribbon arrays (a plasmonic grating structure), which enhances light absorption of the photodetector. The plasmonic InSe/Ti2CTx avalanche photodetector exhibits low dark current (3 nA), high responsivity (1 × 105 AW-1), and high detectivity (7.3 × 1012 Jones).

20.
Adv Mater ; 31(25): e1808231, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31066475

RESUMO

Currently 2D crystals are being studied intensively for use in future nanoelectronics, as conventional semiconductor devices face challenges in high power consumption and short channel effects when scaled to the quantum limit. Toward this end, achieving barrier-free contact to 2D semiconductors has emerged as a major roadblock. In conventional contacts to bulk metals, the 2D semiconductor Fermi levels become pinned inside the bandgap, deviating from the ideal Schottky-Mott rule and resulting in significant suppression of carrier transport in the device. Here, MoS2 polarity control is realized without extrinsic doping by employing a 1D elemental metal contact scheme. The use of high-work-function palladium (Pd) or gold (Au) enables a high-quality p-type dominant contact to intrinsic MoS2 , realizing Fermi level depinning. Field-effect transistors (FETs) with Pd edge contact and Au edge contact show high performance with the highest hole mobility reaching 330 and 432 cm2 V-1 s-1 at 300 K, respectively. The ideal Fermi level alignment allows creation of p- and n-type FETs on the same intrinsic MoS2 flake using Pd and low-work-function molybdenum (Mo) contacts, respectively. This device acts as an efficient inverter, a basic building block for semiconductor integrated circuits, with gain reaching 15 at VD = 5 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA