Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aquat Toxicol ; 201: 119-128, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29906694

RESUMO

The dinoflagellate Heterocapsa circularisquama is highly toxic to bivalves. However, significant toxicity to finfish species has not been reported. We previously found that H. circularisquama has light-dependent haemolytic agents. Purification and chemical structural analyses revealed that the haemolytic agent H2-a is a porphyrin derivative, which exhibits light-dependent cytotoxicity toward tumour cells. To clarify the biological activity of H2-a further, its antibacterial activities against Gram-positive and Gram-negative bacteria were investigated in this study. A fraction (F5) equivalent to H2-a purified from the methanol extract of H. circularisquama showed potent light-dependent bactericidal activity toward Staphylococcus aureus, and the activity was concentration- and light illumination time-dependent; however, Escherichia coli was highly resistant to F5. Electron microscopic observation suggested that F5 induces morphological changes in S. aureus in a light-dependent manner. Further analysis using other bacterial species showed that the Gram-positive bacterium Bacillus subtilis was more sensitive than the Gram-negative bacteria Pseudomonas aeruginosa and Vibrio alginolyticus. These results indicate that F5 is a photo-induced antibacterial agent with relatively higher specificity to Gram-positive bacteria. Iodometric assay suggested that singlet oxygen was generated from light-illuminated F5. Histidine, a specific singlet oxygen scavenger, markedly inhibited the photosensitising antibacterial activity of F5 against S. aureus, suggesting the involvement of singlet oxygen in antibacterial activity. The antibacterial spectrum of F5 was evidently different from that of 5,10,15,20-tetra (N,N,N-trimethylanilinium) porphyrin tetratosylate, a commercially available porphyrin compound with antibacterial activity. Our results demonstrate that H. circularisquama has a novel antibacterial photosensitiser, a porphyrin derivative, with relatively higher specificity to Gram-positive bacteria. To the best of our knowledge, this is the first study to discover a porphyrin derivative with antibacterial activity in marine microalga.


Assuntos
Antibacterianos/farmacologia , Dinoflagellida/química , Luz , Porfirinas/isolamento & purificação , Porfirinas/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fármacos Fotossensibilizantes/isolamento & purificação , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura , Fatores de Tempo
2.
Microsc Res Tech ; 76(11): 1108-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23922188

RESUMO

Nanoarchitecture of cured urea-formaldehyde (UF) resins was examined with a field-emission scanning electron microscope (FE-SEM) after coating samples with osmium, which is considered to produce particles of considerably smaller size compared to other metal coatings used in SEM studies. This method enabled comparison of the nanoarchitecture of UF resins of low (1.0) and high (1.6) formaldehyde/urea (F/U) mole ratios to be made, based on imaging of extremely small size particles as part of UF resin architecture, not described before. Imaging revealed presence of relatively large globular particles (148.084-703.983 nm size range) as well as smaller substructures (28.004-39.604 nm size range) as part of the architecture of 1.0-mole UF resin. Globular particles were also present in 1.6 mole UF resin, but of considerably smaller size (14.760-50.269 nm). The work presented demonstrates usefulness of osmium coating in unraveling the intricacies of the nanostructural organization of cured UF resins, prompting wider application of this immensely useful but grossly underutilized metal coating type in high resolution SEM examination of biological and materials samples.

3.
J Biomed Mater Res B Appl Biomater ; 73(2): 285-90, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15678499

RESUMO

The interaction between acidic fluoride solution and beta titanium alloy was investigated to explore the changes that occur in beta titanium alloy by fluoride-containing acetic acid solutions. For this, alloy crystal structure, tensile strength, and elements released from the alloy wires were determined using four solutions (0.05%/pH 6, 0.05%/pH 4, 0.2%/pH 6, and 0.2%/pH 4) for 1 or 3 days. The immersed wire did not form any identifiable new crystal structure compared with the as-received wire. The tensile strength of the immersed wires was significantly reduced compared to the as-received wires in the test solutions if the period of immersion increased from as-received to 3 days. The fractured area of the immersed wire was reduced compared to the as-received one. The dimple pattern at the inner part and a cup-cone morphology at the outer part of the fractured wires were similar in both as-received and immersed wires. After a 3-day immersion, the amount of the released Ti and Mo has much increased for higher NaF concentration and lower pH value. During the long-period orthodontic treatment, both patient and clinical doctor should carefully use the fluoride-containing products to minimize unexpected damage on orthodontic wires.


Assuntos
Ligas Dentárias/química , Fluoretos/química , Titânio/química , Acetatos , Fios Ortopédicos , Teste de Materiais , Molibdênio , Fluoreto de Sódio , Soluções , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA