Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 445: 138687, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387311

RESUMO

Detection of per- and polyfluoroalkyl substances (PFAS) in food is crucial for ensuring food safety. Therefore, we combined a quick, easy, cheap, rugged, and safe (QuEChERS) extraction method with liquid chromatography-triple-quadrupole mass spectrometry (LC-MS/MS) to detect 35 PFAS in rice. The solvents (water and acetonitrile) were adjusted to pH 2.4, a mixture of anhydrous MgSO4, NaCl, and NaOAc was used for extraction, and anhydrous MgSO4, a primary/secondary amine, and graphitized carbon black were applied for purification. The limits of detection and recovery were 0.005-0.100 ng·g-1 and 86.5 %-126.4 %, respectively. When this method was used to detect PFAS in packaged instant rice cooked in a microwave or boiled in water, the microwaved sample showed a lower PFAS content. However, both samples had PFAS contents within WHO guidelines and were safe for consumption. This method can be extended to detect PFAS levels in other foods exposed to packaging materials containing PFAS.


Assuntos
Fluorocarbonos , Oryza , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Água
2.
J Food Sci ; 89(2): 998-1011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161275

RESUMO

Effects of light or dark storage condition on the profile changes of volatile and non-volatile compounds were evaluated in dried and baked laver for 60 days. Volatile and non-volatile compounds were analyzed using gas chromatography-mass selective detection and high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry, respectively. Baked laver stored in light conditions for 60 days produced the most volatile compounds, whereas dried laver stored in the dark produced the least volatile compounds. Total 11 classes of volatile compounds were detected, including alkanes, alkenes, and ketones, with aldehydes being most abundant in dried laver stored under light. Metabolite analysis of non-volatile compounds led to the selection of 12 compounds with a higher variable importance projection (VIP) value of >1.0: 6 fatty acids (VIP 1.2-2.0), 2 flavanols (VIP 1.3-1.8), hydroxybenzoic acid (VIP 1.5), hydroxycinnamic acid (VIP 2.3), a phenolic acid ester (VIP 1.9), and phloroglucinol (VIP 1.2). Generally, levels of these compounds decreased more following storage in the light than under dark, irrespective of laver preparation. The content of linolenic acid was particularly affected by storage conditions, with light conditions causing a fourfold reduction in linolenic acid level compared with dark conditions, which could result in an increased formation of aldehydes. Gallic acid and sinapinic acid were detected in dried but not baked laver, as they are destroyed by heat treatment. Therefore, laver should be baked and stored in dark conditions to prevent the development of rancidity. PRACTICAL APPLICATION: Laver is one of the representative seaweeds, and the popularity among consumers increases. Although commercially available laver is prepared in dried or baked condition, scientific studies on the changes of metabolites, including volatile and non-volatile compounds during storage, are scarce. The results of this study can be applied to improve proper storage methods to maintain the quality of laver, which can be beneficial for consumers and food industry.


Assuntos
Algas Comestíveis , Porphyra , Compostos Orgânicos Voláteis , Porphyra/química , Aldeídos/análise , Ácidos Linolênicos , Compostos Orgânicos Voláteis/química
3.
Food Sci Nutr ; 10(8): 2590-2600, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35959261

RESUMO

During refrigerated storage, aged beef is liable to undergo alterations in its physicochemical properties. This study aimed to evaluate changes in the community of microorganisms, volatile compounds, and amino acids in aged beef under cold storage conditions. In addition, volatile basic nitrogen (VBN) values were measured to determine the putrefaction degree. Raw-, dry-, and wet-aged beef were stored at 4°C for 21 days. The initial pH of beef under the three conditions ranged from 5.52 to 5.60 and decreased from 5.04 to 5.33 over time. After 21 days, VBN values ranged 20.53-22.59 mg/100 g, which exceeded the standard of spoilage (20 mg/100 g) in the Korean Food Code. As time passed, numbers of psychrophilic and lactic acid bacteria increased in the raw beef. In contrast, number of mesophilic, psychrophilic, and lactic acid bacteria decreased in dry- and wet-aged beef. Among the volatile substances and amino acids, 2,3-butanedione, 2-butanone, tyrosine, and arginine contributed the most to the high VBN levels in aged beef, where the VBN was 21 mg/100 g at 21 days, which was beyond the acceptable limit. In conclusion, clear alterations were observed in the physicochemical properties and microorganism communities in cold-stored aged beef, providing basic information that could benefit the beef industry and boost consumer acceptance.

4.
Food Sci Biotechnol ; 31(7): 787-796, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35720463

RESUMO

Chlorophyll-rich samples, such as kale, interfere with the analysis of residual pesticides and adversely affect the integrity of tandem mass spectrometers. Dispersed solid-phase (d-SPE) extraction using graphitized carbon black effectively removes pigments from kale extracts; however, it also reduces the recoveries of 30 pesticides. To overcome this, alternative sorbents, including ENVI-Carb, ChloroFiltr, and Z-Sep+, were evaluated in this study. A sorbent combination based on 50 mg of Z-Sep+ was most advantageous (21/30), good precision (< 15%), excellent pigment removal capacity, and low matrix effect. The limit of quantification (0.0001-0.0040 mg/kg) was lower than the Korean maximum residue limits levels. The proposed method was validated according to international guidelines and applied to real kale samples. The results demonstrated that d-SPE using Z-Sep+ provides an effective strategy for ensuring mass spectrometry system integrity and improving the analytical accuracy in chlorophyll-rich samples. Supplementary information: The online version contains supplementary material available at 10.1007/s10068-022-01101-3.

5.
Food Sci Nutr ; 7(5): 1727-1734, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31139385

RESUMO

We determined the toxin gene profile, toxin production, antibiotic resistance coagulase serotype, and genetic diversity of 42 coagulase-positive Staphylococcus aureus (CPS) isolates collected from 1,464 cream-filled bakery products in Korea. Among the CPS isolates, 37 (88.1%) produced enterotoxin genes in combination with another toxin; 26 (61.9%) of the strains were positive for sea, 1 (2.4%) for sea-seb, and 4 (9.5%) for sea-sec. Among the strains showing antibiotic resistance, 28 (66.7%) showed resistance to only one antibiotic, whereas nine (21.4%) showed resistance to multiple antibiotics: 4 (9.5%) strains were both mecA-positive and oxacillin-resistant. Most strains are resistant to at least one antibiotic-benzyl penicillin. The CPS isolates were classified into eight coagulase serotypes. This information will be valuable for assessing the capability risks of CPS food poisoning, contributing a better known of the epidemiology result associated with CPS contamination in bakery products.

6.
Phys Chem Chem Phys ; 19(32): 21663-21671, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28767115

RESUMO

In situ time-resolved small-angle X-ray scattering is introduced as a method to monitor the diffusion of a solvent in ceramic hollow nanoparticles (HNPs) supported by a polymer gel scaffold. Changes in the form factor were matched to discrete scattering models. A consecutive reaction kinetic model is used to analyze different stages of solvent diffusion. Rate constants and diffusion coefficients are extracted. By taking the diffusion of low molecular poly(ethylene glycol) in poly(ethylene oxide)-embedded HNPs as a model case, it was found that it took about 0.7 s for the solvent to diffuse through the 6 nm thick shell of HNPs and another 1.2 s to fill the inner cavity, while the diffusion coefficient was of the order of 1018 m2 s-1. The results demonstrate that the method can simultaneously measure solvent penetration into the polymer gel and into embedded sub-100 nm HNPs.

7.
ACS Nano ; 9(5): 4939-49, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25844731

RESUMO

The double-shell SiO2/TiO2 hollow nanoparticles (DS HNPs) are successfully fabricated and adopted as dispersing materials for electrorheological (ER) fluids to investigate an influence of shell structure on ER properties. The DS HNPs-based ER fluid exhibits outstanding ER performance which is 4.1-fold higher compared to that of single shell SiO2/TiO2 hollow nanoparticles (SS HNPs)-based ER fluid. The significantly improved ER property of DS HNPs-based ER fluid is ascribed to the enhanced interfacial polarization. In addition, the ER activities of DS HNPs-based ER fluids are examined depending on the particle diameter. The yield stress of DS HNPs-based ER fluids increases up to 302.4 kPa under an electric field of 3 kV mm(-1) by reducing the particle size, which is remarkable performance enough to promise sufficient probability for practical and industrial applications. The enhanced ER performance of the smaller DS HNPs is attributed to the increased surface area of large pores (30-35 nm) within the shells, resulting in a large achievable polarizability determined by dielectric constants. Furthermore, the antisedimentation property is analyzed in order to offer an additional insight into the effect of particle size on the ER fluids.

8.
ACS Appl Mater Interfaces ; 7(3): 2055-63, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25562329

RESUMO

Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%).

9.
ACS Appl Mater Interfaces ; 6(22): 19825-32, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25343752

RESUMO

Single-crystalline, octahedral CeO2:Eu3+ nanocrystals, successfully prepared using a simple hydrothermal method, were investigated to determine their photovoltaic properties in an effort to enhance the light-harvesting efficiency of dye-sensitized solar cells (DSSCs). The size of the CeO2:Eu3+ nanocrystals (300-400 nm), as well as their mirrorlike facets, significantly improved the diffuse reflectance of visible light. Excitation of the CeO2:Eu3+ nanocrystal with 330 nm ultraviolet light was re-emitted via downconversion photoluminescence (PL) from 570 to 672 nm, corresponding to the 5D0→7FJ transition in the Eu3+ ions. Downconversion PL was dominant at 590 nm and had a maximum intensity for 1 mol % Eu3+. The CeO2:Eu3+ nanocrystal-based DSSCs exhibited a power conversion efficiency of 8.36%, an increase of 14%, compared with conventional TiO2 nanoparticle-based DSSCs, because of the strong light-scattering and downconversion PL of the CeO2:Eu3+ nanocrystals.

10.
Chemistry ; 20(40): 12974-81, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25138442

RESUMO

Designing the photoanode structure in dye-sensitized solar cells (DSSCs) is vital to realizing enhanced power conversion efficiency (PCE). Herein, novel multifunctional silver-decorated porous titanium dioxide nanofibers (Ag/pTiO2 NFs) made by simple electrospinning, etching, and chemical reduction processes are introduced. The Ag/pTiO2 NFs with a high surface area of 163 m(2) g(-1) provided sufficient dye adsorption for light harvesting. Moreover, the approximately 200 nm diameter and rough surface of the Ag/pTiO2 NFs offered enough light scattering, and the enlarged interpores among the NFs in the photoanode also permitted electrolyte circulation. Ag nanoparticles (NPs) were well dispersed on the surface of the TiO2 NFs, which prevented aggregation of the Ag NPs after calcination. Furthermore, a localized surface plasmon resonance effect by the Ag NPs served to increase the light absorption at visible wavelengths. The surface area and amount of Ag NPs was optimized. The PCE of pTiO2 NF-based DSSCs was 27 % higher (from 6.2 to 7.9 %) than for pure TiO2 NFs, whereas the PCE of Ag/pTiO2 NF-based DSSCs increased by about 12 % (from 7.9 to 8.8 %). Thus, the PCE of the multifunctional pTiO2 NFs was improved by 42 %, that is, from 6.2 to 8.8 %.

11.
ACS Appl Mater Interfaces ; 6(17): 15420-6, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25148266

RESUMO

Size-controllable double-shell SiO2/TiO2 hollow nanoparticles (DS HNPs) were fabricated using a simple sol-gel reaction and sonication-mediated etching. The size of the DS HNPs was controlled using SiO2 core templates of various sizes. Moreover, monodisperse DS HNPs were produced on a large scale (10 g per 1 batch) using the sol-gel method. The surface area and porosity of intrashell and inner-cavity pores were measured by Brunauer-Emmett-Teller analysis. As a result, 240 nm DS HNPs (240 DS HNPs) exhibited the highest surface area of 497 m(2) g(-1) and a high porosity. Additionally, DS HNPs showed excellent light-scattering ability as a scattering layer in dye-sensitized solar cells due to their structural properties, such as a composite, double-shell, hollow structure, as well as intrashell and inner cavity pores. The DSSCs incorporating 240 DS HNPs demonstrated an 18.3% enhanced power conversion efficiency (PCE) compared to TiO2 nanoparticles.

12.
Chemistry ; 20(15): 4439-46, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24591121

RESUMO

Hollow SiO2 /TiO2 nanoparticles decorated with Ag nanoparticles (NPs) of controlled size (Ag@HNPs) were fabricated in order to enhance visible-light absorption and improve light scattering in dye-sensitized solar cells (DSSCs). They exhibited localized surface plasmon resonance (LSPR) and the LSPR effects were significantly influenced by the size of the Ag NPs. The absorption peak of the LSPR band dramatically increased with increasing Ag NP size. The LSPR of the large Ag NPs mainly increased the light absorption at short wavelengths, whereas the scattering from the SiO2 /TiO2 HNPs improved the light absorption at long wavelengths. This enabled the working electrode to use the full solar spectrum. Furthermore, the SiO2 layer thickness was adjusted to maximize the LSPR from the Ag NPs and avoid corrosion of the Ag NPs by the electrolyte. Importantly, the power conversion efficiency (PCE) increased from 7.1 % with purely TiO2 -based DSSCs to 8.1 % with HNP-based DSSCs, which is an approximately 12 % enhancement and can be attributed to greater light scattering. Furthermore, the PCEs of Ag@HNP-based DSSCs were 11 % higher (8.1 vs. 9.0 %) than the bare-HNP-based DSSCs, which can be attributed to LSPR. Together, the PCE of Ag@HNP-based DSSCs improved by a total of 27 %, from 7.1 to 9.0 %, due to these two effects. This comparative research will offer guidance in the design of multifunctional nanomaterials and the optimization of solar-cell performance.

13.
Chemistry ; 19(39): 13120-6, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23934778

RESUMO

Enhanced harvesting of visible light is vital to the development of highly efficient dye-sensitized solar cells (DSSCs). Nanosilver-decorated TiO2 nanofibers (Ag@TiO2 NFs) were synthesized by depositing chemically reduced Ag ions onto the surface of electrospun TiO2 nanofibers (TiO2 NFs). The prepared Ag@TiO2 NFs were coated with SiO2 (SiO2@Ag@TiO2 NFs) by using PVP as coupling agent for protecting corrosion of Ag nanoparticle by I(-)/I3(-) solution. The fabricated SiO2@Ag@TiO2 NFs demonstrated a synergistic effect of light scattering and surface plasmons, leading to an enhanced light absorption. Moreover, an anode consisting of SiO2@Ag@TiO2 NFs incorporating TiO2 nanoparticles (NPs) increased light harvesting without substantially sacrificing dye attachment. The power conversion efficiency increased from 6.8 to 8.7 % for a thick film (10 µm), that is, 28 %. These results suggest that SiO2@Ag@TiO2 NFs are promising materials for enhanced light absorption in dye-sensitized solar cells.

14.
ACS Appl Mater Interfaces ; 5(11): 4815-20, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23635382

RESUMO

SiO2/TiO2 core/shell nanoparticles (STCS-NPs) with diameters of 110, 240, and 530 nm were fabricated to investigate the influence of the size and refractive index of light-scattering particles on light-scattering properties. The optical properties of STCS-NPs were evaluated and compared with SiO2-NPs and TiO2-NPs. The structure of STCS-NPs, consisting of a low refractive index core and high refractive index shell, provides efficient light scattering. The optimized anode film with STCS-NPs had ca. 20% improved power conversion efficiency (PCE).

15.
Langmuir ; 28(43): 15350-61, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23030297

RESUMO

A combination of experimental methods, including transmission and grazing incidence small-angle X-ray scattering (SAXS and GISAXS), small-angle neutron scattering (SANS), transmission electron microscopy (TEM), dynamic light scattering (DLS), and N(2) adsorption-desorption isotherms, was used to characterize SiO(2)/TiO(2) hollow nanoparticles (HNPs) of sizes between 25 and 100 nm. In the analysis of SAXS, SANS, and GISAXS data, the decoupling approximation and the Percus-Yevick structure factor approximation were used. Brunauer-Emmett-Teller, t-plot, and a spherical pore model based on Kelvin equation were applied in the treatment of N(2) isotherms. Extracted parameters from the scattering and TEM methods are the average outer and inner diameters and polydispersity. Good agreement was achieved between different methods for these extracted parameters. Merits, advantages, and disadvantages of the different methods are discussed. Furthermore, the combination of these methods provided us with information on the porosity of the shells of HNPs and the size of intrawall pores, which are critical to the applications of HNPs as drug delivery vehicles and catalyst supports.

16.
ACS Appl Mater Interfaces ; 4(10): 5287-92, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22985179

RESUMO

Multiscale porous (MSP) TiO(2) nanofibers (NFs) were fabricated using a simple electrospinning and etching process with TiO(2)/SiO(2) composite NFs for high-efficiency dye-sensitized solar cells (DSSCs). TiO(2) NFs with different pore sizes (small, large, and multiscale) were prepared using SiO(2) nanoparticles of various sizes. The surface area of the MSP TiO(2) NFs was nine times higher than that of pristine TiO(2) NFs, providing sufficient dye adsorption for light harvesting as well as efficient paths for electrolyte contact. Moreover, the one-dimensional structure provides efficient light scattering and fast electron transport. As a result, DSSCs exhibited an enhanced current density (J(sc)) of 16.3 mA cm(-2) and a high photoconversion efficiency (η) of 8.5%, greater than those of conventional photoelectrodes made of TiO(2) nanoparticles (J(sc) of 12.0 mA cm(-2) and η of 6.0 %).


Assuntos
Nanofibras/química , Energia Solar , Titânio/química , Corantes/química , Eletrodos , Eletrólitos/química , Luz , Porosidade , Espalhamento de Radiação , Dióxido de Silício/química
17.
ACS Appl Mater Interfaces ; 4(1): 460-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22181053

RESUMO

This paper describes the one-pot, aqueous synthesis of cationic polymer nanofibers with embedded silver nanoparticles. Poly[2-(tert-butylaminoethyl) methacrylate] (PTBAM) was used as a cationic polymer substrate to reinforce the antimicrobial activity of the embedded silver nanoparticles. Electron microscope analyses revealed that the as-synthesized nanofibers had diameters of approximately 40 nm and lengths up to about 10 µm. Additionally, silver nanoparticles of approximately 8 nm in diameter were finely embedded into the prepared nanofibers. The embedded silver nanoparticles had a lower tendency to agglomerate than colloidal silver nanoparticles of comparable size. In addition, the nanofibers with embedded silver nanoparticles exhibited excellent antibacterial performance against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Interestingly, the prepared nanofibers exhibited enhanced bactericidal performance compared with the silver-embedded poly(methyl methacrylate) (PMMA) nanofibers, presumably because of the antibacterial properties of the PTBAM substrate.


Assuntos
Antibacterianos/síntese química , Nanopartículas Metálicas/química , Nanofibras/química , Polímeros/síntese química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Polímeros/química , Polímeros/farmacologia , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA