Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Neuroimage ; 291: 120600, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569979

RESUMO

Our knowledge of the organisation of the human brain at the population-level is yet to translate into power to predict functional differences at the individual-level, limiting clinical applications and casting doubt on the generalisability of inferred mechanisms. It remains unknown whether the difficulty arises from the absence of individuating biological patterns within the brain, or from limited power to access them with the models and compute at our disposal. Here we comprehensively investigate the resolvability of such patterns with data and compute at unprecedented scale. Across 23 810 unique participants from UK Biobank, we systematically evaluate the predictability of 25 individual biological characteristics, from all available combinations of structural and functional neuroimaging data. Over 4526 GPU*hours of computation, we train, optimize, and evaluate out-of-sample 700 individual predictive models, including fully-connected feed-forward neural networks of demographic, psychological, serological, chronic disease, and functional connectivity characteristics, and both uni- and multi-modal 3D convolutional neural network models of macro- and micro-structural brain imaging. We find a marked discrepancy between the high predictability of sex (balanced accuracy 99.7%), age (mean absolute error 2.048 years, R2 0.859), and weight (mean absolute error 2.609Kg, R2 0.625), for which we set new state-of-the-art performance, and the surprisingly low predictability of other characteristics. Neither structural nor functional imaging predicted an individual's psychology better than the coincidence of common chronic disease (p < 0.05). Serology predicted chronic disease (p < 0.05) and was best predicted by it (p < 0.001), followed by structural neuroimaging (p < 0.05). Our findings suggest either more informative imaging or more powerful models will be needed to decipher individual level characteristics from the human brain. We make our models and code openly available.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Pré-Escolar , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Emoções , Doença Crônica , Neuroimagem/métodos
2.
Nat Med ; 30(2): 394-402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38287166

RESUMO

Alzheimer's disease (AD) is characterized pathologically by amyloid-beta (Aß) deposition in brain parenchyma and blood vessels (as cerebral amyloid angiopathy (CAA)) and by neurofibrillary tangles of hyperphosphorylated tau. Compelling genetic and biomarker evidence supports Aß as the root cause of AD. We previously reported human transmission of Aß pathology and CAA in relatively young adults who had died of iatrogenic Creutzfeldt-Jakob disease (iCJD) after childhood treatment with cadaver-derived pituitary growth hormone (c-hGH) contaminated with both CJD prions and Aß seeds. This raised the possibility that c-hGH recipients who did not die from iCJD may eventually develop AD. Here we describe recipients who developed dementia and biomarker changes within the phenotypic spectrum of AD, suggesting that AD, like CJD, has environmentally acquired (iatrogenic) forms as well as late-onset sporadic and early-onset inherited forms. Although iatrogenic AD may be rare, and there is no suggestion that Aß can be transmitted between individuals in activities of daily life, its recognition emphasizes the need to review measures to prevent accidental transmissions via other medical and surgical procedures. As propagating Aß assemblies may exhibit structural diversity akin to conventional prions, it is possible that therapeutic strategies targeting disease-related assemblies may lead to selection of minor components and development of resistance.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Síndrome de Creutzfeldt-Jakob , Príons , Adulto Jovem , Humanos , Criança , Doença de Alzheimer/patologia , Hormônio do Crescimento , Peptídeos beta-Amiloides/metabolismo , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Encéfalo/patologia , Príons/metabolismo , Cadáver , Doença Iatrogênica , Biomarcadores
3.
Clin Infect Dis ; 78(2): 457-460, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37897407

RESUMO

Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show magnetic resonance imaging (MRI) features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in 2 adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment.


Assuntos
Edema Encefálico , Malária Cerebral , Adulto , Humanos , Malária Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Edema Encefálico/etiologia , Edema Encefálico/patologia
4.
Neurooncol Adv ; 5(1): vdad122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841694

RESUMO

Background: The distinction between viable tumor and therapy-induced changes is crucial for the clinical management of patients with gliomas. This study aims to quantitatively assess the efficacy of arterial spin labeling (ASL) biomarkers, including relative cerebral blood flow (rCBF) and absolute cerebral blood flow (CBF), for the discrimination of progressive disease (PD) and treatment-related effects. Methods: Eight articles were included in the synthesis after searching the literature systematically. Data have been extracted and a meta-analysis using the random-effect model was subsequently carried out. Diagnostic accuracy assessment was also performed. Results: This study revealed that there is a significant difference in perfusion measurements between groups with PD and therapy-induced changes. The rCBF yielded a standardized mean difference (SMD) of 1.25 [95% CI 0.75, 1.75] (p < .00001). The maximum perfusion indices (rCBFmax and CBFmax) both showed equivalent discriminatory ability, with SMD of 1.35 [95% CI 0.78, 1.91] (p < .00001) and 1.56 [95% CI 0.79, 2.33] (p < .0001), respectively. Similarly, accuracy estimates were comparable among ASL-derived metrices. Pooled sensitivities [95% CI] were 0.85 [0.67, 0.94], 0.88 [0.71, 0.96], and 0.93 [0.73, 0.98], and pooled specificities [95% CI] were 0.83 [0.71, 0.91], 0.83 [0.67, 0.92], 0.84 [0.67, 0.93], for rCBF, rCBFmax and CBFmax, respectively. Corresponding HSROC area under curve (AUC) [95% CI] were 0.90 [0.87, 0.92], 0.92 [0.89, 0.94], and 0.93 [0.90, 0.95]. Conclusion: These results suggest that ASL quantitative biomarkers, particularly rCBFmax and CBFmax, have the potential to discriminate between glioma progression and therapy-induced changes.

5.
Brain ; 146(11): 4736-4754, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37665980

RESUMO

Tumour heterogeneity is increasingly recognized as a major obstacle to therapeutic success across neuro-oncology. Gliomas are characterized by distinct combinations of genetic and epigenetic alterations, resulting in complex interactions across multiple molecular pathways. Predicting disease evolution and prescribing individually optimal treatment requires statistical models complex enough to capture the intricate (epi)genetic structure underpinning oncogenesis. Here, we formalize this task as the inference of distinct patterns of connectivity within hierarchical latent representations of genetic networks. Evaluating multi-institutional clinical, genetic and outcome data from 4023 glioma patients over 14 years, across 12 countries, we employ Bayesian generative stochastic block modelling to reveal a hierarchical network structure of tumour genetics spanning molecularly confirmed glioblastoma, IDH-wildtype; oligodendroglioma, IDH-mutant and 1p/19q codeleted; and astrocytoma, IDH-mutant. Our findings illuminate the complex dependence between features across the genetic landscape of brain tumours and show that generative network models reveal distinct signatures of survival with better prognostic fidelity than current gold standard diagnostic categories.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Teorema de Bayes , Redes Reguladoras de Genes/genética , Mutação/genética , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética
6.
Front Neuroimaging ; 2: 1062493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554653

RESUMO

Aims: To determine an imaging protocol that can be used to assess the distribution of infusate in children with DIPG treated with CED. Methods: 13 children diagnosed with DIPG received between 3.8 and 5.7 ml of infusate, through two pairs of catheters to encompass tumor volume on day 1 of cycle one of treatment. Volumetric T2-weighted (T2W) and diffusion-weighted MRI imaging (DWI) were performed before and after day 1 of CED. Apparent diffusion coefficient (ADC) maps were calculated. The tumor volume pre and post CED was automatically segmented on T2W and ADC on the basis of signal intensity. The ADC maps pre and post infusion were aligned and subtracted to visualize the infusate distribution. Results: There was a significant increase (p < 0.001) in mean ADC and T2W signal intensity (SI) ratio and a significant (p < 0.001) increase in mean tumor volume defined by ADC and T2W SI post infusion (mean ADC volume pre: 19.8 ml, post: 24.4 ml; mean T2W volume pre: 19.4 ml, post: 23.4 ml). A significant correlation (p < 0.001) between infusate volume and difference in ADC/T2W SI defined tumor volume was observed (ADC, r = 0.76; T2W, r = 0.70). Finally, pixel-by-pixel subtraction of the ADC maps pre and post infusion demonstrated a volume of high signal intensity, presumed infusate distribution. Conclusions: ADC and T2W MRI are proposed as a combined parameter method for evaluation of CED infusate distribution in brainstem tumors in future clinical trials.

7.
Brain Commun ; 5(2): fcad118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124946

RESUMO

Progress in neuro-oncology is increasingly recognized to be obstructed by the marked heterogeneity-genetic, pathological, and clinical-of brain tumours. If the treatment susceptibilities and outcomes of individual patients differ widely, determined by the interactions of many multimodal characteristics, then large-scale, fully-inclusive, richly phenotyped data-including imaging-will be needed to predict them at the individual level. Such data can realistically be acquired only in the routine clinical stream, where its quality is inevitably degraded by the constraints of real-world clinical care. Although contemporary machine learning could theoretically provide a solution to this task, especially in the domain of imaging, its ability to cope with realistic, incomplete, low-quality data is yet to be determined. In the largest and most comprehensive study of its kind, applying state-of-the-art brain tumour segmentation models to large scale, multi-site MRI data of 1251 individuals, here we quantify the comparative fidelity of automated segmentation models drawn from MR data replicating the various levels of completeness observed in real life. We demonstrate that models trained on incomplete data can segment lesions very well, often equivalently to those trained on the full completement of images, exhibiting Dice coefficients of 0.907 (single sequence) to 0.945 (complete set) for whole tumours and 0.701 (single sequence) to 0.891 (complete set) for component tissue types. This finding opens the door both to the application of segmentation models to large-scale historical data, for the purpose of building treatment and outcome predictive models, and their application to real-world clinical care. We further ascertain that segmentation models can accurately detect enhancing tumour in the absence of contrast-enhancing imaging, quantifying the burden of enhancing tumour with an R 2 > 0.97, varying negligibly with lesion morphology. Such models can quantify enhancing tumour without the administration of intravenous contrast, inviting a revision of the notion of tumour enhancement if the same information can be extracted without contrast-enhanced imaging. Our analysis includes validation on a heterogeneous, real-world 50 patient sample of brain tumour imaging acquired over the last 15 years at our tertiary centre, demonstrating maintained accuracy even on non-isotropic MRI acquisitions, or even on complex post-operative imaging with tumour recurrence. This work substantially extends the translational opportunity for quantitative analysis to clinical situations where the full complement of sequences is not available and potentially enables the characterization of contrast-enhanced regions where contrast administration is infeasible or undesirable.

8.
Magn Reson Med ; 90(3): 1130-1136, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222226

RESUMO

The British and Irish Chapter of the International Society for Magnetic Resonance in Medicine (BIC-ISMRM) held a workshop entitled "Steps on the path to clinical translation" in Cardiff, UK, on 7th September 2022. The aim of the workshop was to promote discussion within the MR community about the problems and potential solutions for translating quantitative MR (qMR) imaging and spectroscopic biomarkers into clinical application and drug studies. Invited speakers presented the perspectives of radiologists, radiographers, clinical physicists, vendors, imaging Contract/Clinical Research Organizations (CROs), open science networks, metrologists, imaging networks, and those developing consensus methods. A round-table discussion was held in which workshop participants discussed a range of questions pertinent to clinical translation of qMR imaging and spectroscopic biomarkers. Each group summarized their findings via three main conclusions and three further questions. These questions were used as the basis of an online survey of the broader UK MR community.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética , Biomarcadores
9.
Brain ; 146(1): 167-181, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36574957

RESUMO

Fluid intelligence is arguably the defining feature of human cognition. Yet the nature of its relationship with the brain remains a contentious topic. Influential proposals drawing primarily on functional imaging data have implicated 'multiple demand' frontoparietal and more widely distributed cortical networks, but extant lesion-deficit studies with greater causal power are almost all small, methodologically constrained, and inconclusive. The task demands large samples of patients, comprehensive investigation of performance, fine-grained anatomical mapping, and robust lesion-deficit inference, yet to be brought to bear on it. We assessed 165 healthy controls and 227 frontal or non-frontal patients with unilateral brain lesions on the best-established test of fluid intelligence, Raven's Advanced Progressive Matrices, employing an array of lesion-deficit inferential models responsive to the potentially distributed nature of fluid intelligence. Non-parametric Bayesian stochastic block models were used to reveal the community structure of lesion deficit networks, disentangling functional from confounding pathological distributed effects. Impaired performance was confined to patients with frontal lesions [F(2,387) = 18.491; P < 0.001; frontal worse than non-frontal and healthy participants P < 0.01, P <0.001], more marked on the right than left [F(4,385) = 12.237; P < 0.001; right worse than left and healthy participants P < 0.01, P < 0.001]. Patients with non-frontal lesions were indistinguishable from controls and showed no modulation by laterality. Neither the presence nor the extent of multiple demand network involvement affected performance. Both conventional network-based statistics and non-parametric Bayesian stochastic block modelling heavily implicated the right frontal lobe. Crucially, this localization was confirmed on explicitly disentangling functional from pathology-driven effects within a layered stochastic block model, prominently highlighting a right frontal network involving middle and inferior frontal gyrus, pre- and post-central gyri, with a weak contribution from right superior parietal lobule. Similar results were obtained with standard lesion-deficit analyses. Our study represents the first large-scale investigation of the distributed neural substrates of fluid intelligence in the focally injured brain. Combining novel graph-based lesion-deficit mapping with detailed investigation of cognitive performance in a large sample of patients provides crucial information about the neural basis of intelligence. Our findings indicate that a set of predominantly right frontal regions, rather than a more widely distributed network, is critical to the high-level functions involved in fluid intelligence. Further they suggest that Raven's Advanced Progressive Matrices is a useful clinical index of fluid intelligence and a sensitive marker of right frontal lobe dysfunction.


Assuntos
Encéfalo , Inteligência , Humanos , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Cognição , Córtex Pré-Frontal , Lobo Frontal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
10.
Nucl Med Commun ; 44(1): 91-99, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36378239

RESUMO

OBJECTIVE: The heterogeneity of post-treatment imaging remains a significant challenge in children and teenagers/young adults (TYA) diagnosed with glioma. The aim of this study was to evaluate the utility of 18 F-choline PET/MRI in determining intratumoural heterogeneity in paediatric and TYA gliomas. METHODS: Twenty-six patients (mean age 16 years, range 8-22 years) with suspected glioma disease progression were evaluated with 18 F-choline PET/MRI. Relative cerebral blood volume (rCBV), apparent diffusion coefficient (ADC) and maximum standardised uptake values (SUV max ) in enhancing (enh) and non-enhancing (ne) tumour volumes and normal-appearing white matter (wm) were calculated (rCBV enh , rCBV ne , rCBV wm , ADC enh , ADC ne , ADC wm , SUV enh , SUV ne and SUV wm ). RESULTS: Significantly higher SUV enh and SUV ne compared with SUV wm were observed [SUV enh 0.89 (0.23-1.90), SUV ne 0.36 (0.16-0.78) versus SUV wm 0.15 (0.04-1.19); P < 0.001 and P = 0.004, respectively]. Equivalent results were observed for ADV and rCBV (ADC enh , ADC ne : P < 0.001 versus ADC wm ; rCBV enh , rCBV ne : P < 0.001 versus rCBV wm ). The highest values for mean SUV max [0.89 (0.23-1.90)] and mean rCBV [2.1 (0.74-5.08)] were in the enhancing component, while the highest values for ADC [1780 mm 2 /s (863-2811)] were in the necrotic component. CONCLUSION: 18 F-choline PET/MRI is able map imaging heterogeneity in paediatric and TYA gliomas, detecting post-treatment enhancing, non-enhancing, and necrotic tumour components equivalent to ADC and DSC-derived rCBV. This offers potential in the response assessment of diffuse non-enhancing gliomas and in selected cases such as posterior fossa tumours where quantitative MRI is technically difficult.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto Jovem , Criança , Adolescente , Adulto , Colina , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons
12.
Sci Rep ; 12(1): 15805, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138051

RESUMO

Hematological malignancies place individuals at risk of CNS involvement from their hematological disease and opportunistic intracranial infection secondary to disease-/treatment-associated immunosuppression. Differentiating CNS infection from hematological disease infiltration in these patients is valuable but often challenging. We sought to determine if statistical models might aid discrimination between these processes. Neuroradiology, clinical and laboratory data for patients with hematological malignancy at our institution between 2007 and 2017 were retrieved. MRI were deep-phenotyped across anatomical distribution, presence of pathological enhancement, diffusion restriction and hemorrhage and statistically modelled with Bayesian-directed probability networks and multivariate logistic regression. 109 patients were studied. Irrespective of a diagnosis of CNS infection or hematological disease, the commonest anatomical distributions of abnormality were multifocal-parenchymal (34.9%), focal-parenchymal (29.4%) and leptomeningeal (11.9%). Pathological enhancement was the most frequently observed abnormality (46.8%), followed by hemorrhage (22.9%) and restricted diffusion (19.3%). Logistic regression could differentiate CNS infection from hematological disease infiltration with an AUC of 0.85 where, with OR > 1 favoring CNS infection and < 1 favoring CNS hematological disease, significantly predictive imaging features were hemorrhage (OR 24.61, p = 0.02), pathological enhancement (OR 0.17, p = 0.04) and an extra-axial location (OR 0.06, p = 0.05). In conclusion, CNS infection and hematological disease are heterogeneous entities with overlapping radiological appearances but a multivariate interaction of MR imaging features may assist in distinguishing them.


Assuntos
Doenças do Sistema Nervoso Central , Infecções do Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central , Neoplasias Hematológicas , Teorema de Bayes , Neoplasias Hematológicas/complicações , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
13.
J Neurol ; 269(8): 4452-4458, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35362733

RESUMO

BACKGROUND: MRI is invaluable for the pre-mortem diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD), demonstrating characteristic diffusion abnormalities. Previous work showed these changes were often not reported (low sensitivity), leading to eventual diagnosis at a more advanced state. Here, we reviewed the situation a decade later, on the presumption of improved access and awareness over time. METHODS: We reviewed initial MRI scans of 102 consecutive suspected sCJD patients recruited to the National Prion Monitoring Cohort study between 2015 and 2019, assessing for characteristic signal changes in the striatum, thalamus and cortical ribbon. We compared our findings to formal reports from referring centres. Requesting indications were studied to assess if they were suggestive of CJD. Patients were examined and their MRC Prion Disease Rating Scale scores recorded. RESULTS: We identified characteristic MRI abnormalities in 101 cases (99% sensitivity), whilst referring centres reported changes in 70 cases (69% sensitivity), which was a significant improvement in reporting sensitivity from 2012. Reporting sensitivity was associated with signal change in the cerebral cortex, and with the number of regions involved, but not significantly affected by clinical information on request forms, or referring centres being regional neuroscience/non-neuroscience centres. Similar to a previous study, patients with missed abnormalities on initial reporting possessed lower MRC Scale scores when referred to the NPC than those correctly identified. CONCLUSIONS: Whilst local MRI reporting of sCJD has improved with time, characteristic abnormalities remain significantly under detected on initial scans. Sensitivity is better when the cerebral cortex and multiple regions are involved. We re-emphasize the utility of MRI and encourage further efforts to improve awareness and sensitivity in the assessment of patients with rapidly progressive dementia.


Assuntos
Síndrome de Creutzfeldt-Jakob , Imagem de Difusão por Ressonância Magnética , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
14.
Lancet Neurol ; 21(4): 342-354, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35305340

RESUMO

BACKGROUND: Human prion diseases, including Creutzfeldt-Jakob disease (CJD), are rapidly progressive, invariably fatal neurodegenerative conditions with no effective therapies. Their pathogenesis involves the obligate recruitment of cellular prion protein (PrPC) into self-propagating multimeric assemblies or prions. Preclinical studies have firmly validated the targeting of PrPC as a therapeutic strategy. We aimed to evaluate a first-in-human treatment programme using an anti-PrPC monoclonal antibody under a Specials Licence. METHODS: We generated a fully humanised anti-PrPC monoclonal antibody (an IgG4κ isotype; PRN100) for human use. We offered treatment with PRN100 to six patients with a clinical diagnosis of probable CJD who were not in the terminal disease stages at the point of first assessment and who were able to readily travel to the University College London Hospital (UCLH) Clinical Research Facility, London, UK, for treatment. After titration (1 mg/kg and 10 mg/kg at 48-h intervals), patients were treated with 80-120 mg/kg of intravenous PRN100 every 2 weeks until death or withdrawal from the programme, or until the supply of PRN100 was exhausted, and closely monitored for evidence of adverse effects. Disease progression was assessed by use of the Medical Research Council (MRC) Prion Disease Rating Scale, Motor Scale, and Cognitive Scale, and compared with that of untreated natural history controls (matched for disease severity, subtype, and PRNP codon 129 genotype) recruited between Oct 1, 2008, and July 31, 2018, from the National Prion Monitoring Cohort study. Autopsies were done in two patients and findings were compared with those from untreated natural history controls. FINDINGS: We treated six patients (two men; four women) with CJD for 7-260 days at UCLH between Oct 9, 2018, and July 31, 2019. Repeated intravenous dosing of PRN100 was well tolerated and reached the target CSF drug concentration (50 nM) in four patients after 22-70 days; no clinically significant adverse reactions were seen. All patients showed progressive neurological decline on serial assessments with the MRC Scales. Neuropathological examination was done in two patients (patients 2 and 3) and showed no evidence of cytotoxicity. Patient 2, who was treated for 140 days, had the longest clinical duration we have yet documented for iatrogenic CJD and showed patterns of disease-associated PrP that differed from untreated patients with CJD, consistent with drug effects. Patient 3, who had sporadic CJD and only received one therapeutic dose of 80 mg/kg, had weak PrP synaptic labelling in the periventricular regions, which was not a feature of untreated patients with sporadic CJD. Brain tissue-bound drug concentrations across multiple regions in patient 2 ranged from 9·9 µg per g of tissue (SD 0·3) in the thalamus to 27·4 µg per g of tissue (1·5) in the basal ganglia (equivalent to 66-182 nM). INTERPRETATION: Our academic-led programme delivered what is, to our knowledge, the first rationally designed experimental treatment for human prion disease to a small number of patients with CJD. The treatment appeared to be safe and reached encouraging CSF and brain tissue concentrations. These findings justify the need for formal efficacy trials in patients with CJD at the earliest possible clinical stages and as prophylaxis in those at risk of prion disease due to PRNP mutations or prion exposure. FUNDING: The Cure CJD Campaign, the National Institute for Health Research UCLH Biomedical Research Centre, the Jon Moulton Charitable Trust, and the UK MRC.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Anticorpos Monoclonais/uso terapêutico , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/diagnóstico , Encefalopatia Espongiforme Bovina , Feminino , Humanos , Masculino , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/genética , Príons/genética
16.
J Pers Med ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34575653

RESUMO

Primary central nervous system lymphoma (PCNSL) has variable imaging appearances, which overlap with those of glioblastoma (GBM), thereby necessitating invasive tissue diagnosis. We aimed to investigate whether a rapid filtration histogram analysis of clinical MRI data supports the distinction of PCNSL from GBM. Ninety tumours (PCNSL n = 48, GBM n = 42) were analysed using pre-treatment MRI sequences (T1-weighted contrast-enhanced (T1CE), T2-weighted (T2), and apparent diffusion coefficient maps (ADC)). The segmentations were completed with proprietary texture analysis software (TexRAD version 3.3). Filtered (five filter sizes SSF = 2-6 mm) and unfiltered (SSF = 0) histogram parameters were compared using Mann-Whitney U non-parametric testing, with receiver operating characteristic (ROC) derived area under the curve (AUC) analysis for significant results. Across all (n = 90) tumours, the optimal algorithm performance was achieved using an unfiltered ADC mean and the mean of positive pixels (MPP), with a sensitivity of 83.8%, specificity of 8.9%, and AUC of 0.88. For subgroup analysis with >1/3 necrosis masses, ADC permitted the identification of PCNSL with a sensitivity of 96.9% and specificity of 100%. For T1CE-derived regions, the distinction was less accurate, with a sensitivity of 71.4%, specificity of 77.1%, and AUC of 0.779. A role may exist for cross-sectional texture analysis without complex machine learning models to differentiate PCNSL from GBM. ADC appears the most suitable sequence, especially for necrotic lesion distinction.

17.
Cortex ; 143: 164-179, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438298

RESUMO

The autonomic nervous system governs the body's multifaceted internal adaptation to diverse changes in the external environment, a role more complex than is accessible to the methods-and data scales-hitherto used to illuminate its operation. Here we apply generative graphical modelling to large-scale multimodal neuroimaging data encompassing normal and abnormal states to derive a comprehensive hierarchical representation of the autonomic brain. We demonstrate that whereas conventional structural and functional maps identify regions jointly modulated by parasympathetic and sympathetic systems, only graphical analysis discriminates between them, revealing the cardinal roles of the autonomic system to be mediated by high-level distributed interactions. We provide a novel representation of the autonomic system-a multidimensional, generative network-that renders its richness tractable within future models of its function in health and disease.


Assuntos
Conectoma , Sistema Nervoso Autônomo , Encéfalo/diagnóstico por imagem , Humanos
18.
Int J Clin Oncol ; 26(4): 647-658, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33575829

RESUMO

PURPOSE: Effective treatment of diffuse intrinsic pontine glioma (DIPG) remains a formidable challenge due to inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies. The BBB can be overcome by directly infusing drugs into pons using method of convection-enhanced delivery (CED). We describe our clinical experience and what we have learned about the safety and feasibility of treating DIPG with intermittent CED of carboplatin and sodium valproate to the pons through the Renishaw Drug Delivery System (RDDS). METHODS: Retrospective review (2017-2020) of children with DIPG, who following radiotherapy, received compassionate treatment commencing 3.3-10 months post-diagnosis (median 4.9 months). They received up to 7 cycles of 3-6 weekly pontine infusions of carboplatin (0.12-0.18 mg/ml) and sodium valproate (14.4-28.8 mg/ml). RESULTS: 13 children 3-19 years (mean 6.9 years) were treated. There were no surgical complications. With the exception of infusion channels blocking in one device, there were no adverse device effects. Two patients developed persistent 6th nerve palsies, which led to drug concentration reduction in the combination therapy. Subsequently infusion/ drug-related toxicities were transient. Tumour was controlled in pons in 10/13 patients. Median progression-free survival (PFS) was 13.0 months, while median overall survival (OS) was 15.3 months. CONCLUSIONS: Use of the RDDS was safe and well tolerated in all 13 patients. Treatment improved control of pontine disease resulting in longer PFS and OS and merits further evaluation in a clinical trial.


Assuntos
Antineoplásicos , Glioma Pontino Intrínseco Difuso , Glioma , Antineoplásicos/uso terapêutico , Carboplatina/efeitos adversos , Criança , Convecção , Glioma/tratamento farmacológico , Glioma/radioterapia , Humanos , Ponte , Estudos Retrospectivos , Ácido Valproico/efeitos adversos , Adulto Jovem
19.
Eur J Anaesthesiol ; 38(7): 777-784, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470687

RESUMO

BACKGROUND: Currently, performing an epidural blood patch (EBP) for postdural puncture headache (PDPH) remains a subjective clinical decision. An evidence-based protocol may be of value in identifying women at high risk of developing a severe PDPH. OBJECTIVE: To investigate a potential correlation between the extent of CSF spread in the epidural space, as noted on Magnetic Resonance Imaging (MRI), and the likelihood of development of severe PDPH in obstetric patients. DESIGN: A prospective double-blind quasi-observational study. SETTING: Eight tertiary obstetric units, from NHS hospitals. PATIENTS: Parturients with accidental dural puncture (ADP) underwent T1 and T2-weighted MRI scans of the brain and lumbar spine within 48 h after delivery. All women were followed up, daily, for 1 week. MAIN OUTCOME MEASURES: For each woman, a PDPH severity score was calculated using a four-point Verbal Reporting Scale (none = 0, mild = 1, moderate = 2, severe = 3), with additional points awarded for visual, auditory and emetic symptoms. MRIs were reported by a neuroradiologist, blind to the patient details, using a predefined MRI score. RESULTS: Twenty-two parturients were recruited; 86% (n=19) developed PDPH and 10 of these (53%) required an EBP. The median (range) time for the onset of PDPH was 24 (4 to 126) hours. The median (range) cumulative PDPH severity score was 10 (0 to 21), whereas, the median (range) MRI score was 2.5 (0 to 12). Spearman (rs) analysis identified a significant positive correlation (rs = 0.46; P = 0.024) between cumulative PDPH severity and MRI scores. Of all the radiological features identified in an MRI (lumbar dural shift, caudal brain displacement, epidural or intrathecal blood), the presence of intrathecal blood was most strongly correlated with PDPH severity (P = 0.043). CONCLUSION: Following an ADP, the extent of CSF spread in the epidural space correlates with the severity of subsequent PDPH. CLINICAL TRIAL NUMBER AND REGISTRY URL: ISRCTN14959004, https://www.isrctn.com/.


Assuntos
Anestesia Epidural/efeitos adversos , Obstetrícia , Cefaleia Pós-Punção Dural , Espaço Epidural , Feminino , Humanos , Imageamento por Ressonância Magnética , Cefaleia Pós-Punção Dural/diagnóstico por imagem , Cefaleia Pós-Punção Dural/etiologia , Gravidez , Estudos Prospectivos
20.
EJHaem ; 2(4): 848-853, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35845220

RESUMO

Progressive multifocal leukoencephalopathy (PML) is an opportunistic brain infection with few treatment options and poor survival when reversal of the underlying immune dysfunction is not achievable. JC polyomavirus reactivation resulting in PML can rarely complicate chimeric antigen receptor T-cell (CAR-T) therapy. We describe successful treatment of PML with Programmed death-1 (PD-1) blockade using pembrolizumab, 4 months following axicabtagene ciloleucel. Radiological features of immune reconstitution inflammatory syndrome without clinical deterioration were seen. Evidence of anti-viral immune reconstitution by in vitro detection of JC-specific T-cells and sustained neurological recovery in this patient suggest PD-1 blockade may be an effective treatment approach for PML post-CAR-T.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA