Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38179990

RESUMO

A fully assembled spirochaete genome was identified as a contaminating scaffold in our red abalone (Haliotis rufescens) genome assembly. In this paper, we describe the analysis of this bacterial genome. The assembled spirochaete genome is 3.25 Mb in size with 48.5 mol% G+C content. The proteomes of 38 species were compared with the spirochaete genome and it was discovered to form an independent branch within the family Spirochaetaceae on the phylogenetic tree. The comparison of 16S rRNA sequences and average nucleotide identity scores between the spirochaete genome with known species of different families in Spirochaetia indicate that it is an unknown species. Further, the percentage of conserved proteins compared to neighbouring taxa confirm that it does not belong to a known genus within Spirochaetaceae. We propose the name Candidatus Haliotispira prima gen. nov., sp. nov. based on its taxonomic placement and origin. We also tested for the presence of this species in different species of abalone and found that it is also present in white abalone (Haliotis sorenseni). In addition, we highlight the need for better classification of taxa within the class Spirochaetia.


Assuntos
Gastrópodes , Spirochaeta , Spirochaetaceae , Humanos , Animais , Spirochaetales , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Bactérias
2.
J Hered ; 115(2): 188-202, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38158823

RESUMO

Seascape genomics gives insight into the geographic and environmental factors shaping local adaptations. It improves the understanding of the potential effects of climate change, which is relevant to provide the basis for the international management of fishery resources. The pink abalone (Haliotis corrugata) is distributed from California, United States to Baja California Sur, Mexico, exposed to a latitudinal environmental gradient in the California Current System. Management of the pink abalone contrasts between Mexico and the United States; Mexico has an active fishery organized in four administrative areas, while the United States has kept the fishery in permanent closure since 1996. However, the impact of environmental factors on genetic variation along the species distribution remains unknown, and understanding this relationship is crucial for effective spatial management strategies. This study aims to investigate the neutral and adaptive genomic structure of H. corrugata. A total of 203 samples from 13 locations were processed using ddRADseq, and covering the species' distribution. Overall, 2,231 neutral, nine potentially adaptive and three genomic-environmental association loci were detected. The neutral structure identified two groups: 1) California, United States and 2) Baja California Peninsula, México. In addition, the adaptive structure analysis also detected two groups with genetic divergence observed at Punta Eugenia. Notably, the seawater temperature significantly correlated with the northern group (temperate) and the southern (warmer) group. This study is a valuable foundation for future research and conservation initiatives, emphasizing the importance of considering neutral and adaptive genetic factors when developing management strategies for marine species.


Assuntos
Gastrópodes , Animais , México , Genômica , Deriva Genética , Água do Mar
3.
Ecol Evol ; 12(9): e9341, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36188524

RESUMO

Speciation in the marine environment is challenged by the wide geographic distribution of many taxa and potential for high rates of gene flow through larval dispersal mechanisms. Depth has recently been proposed as a potential driver of ecological divergence in fishes, and yet it is unclear how adaptation along these gradients' shapes genomic divergence. The genus Sebastes contains numerous species pairs that are depth-segregated and can provide a better understanding of the mode and tempo of genomic diversification. Here, we present exome data on two species pairs of rockfishes that are depth-segregated and have different degrees of divergence: S. chlorostictus-S. rosenblatti and S. crocotulus-S. miniatus. We were able to reliably identify "islands of divergence" in the species pair with more recent divergence (S. chlorostictus-S. rosenblatti) and discovered a number of genes associated with neurosensory function, suggesting a role for this pathway in the early speciation process. We also reconstructed demographic histories of divergence and found the best supported model was isolation followed by asymmetric secondary contact for both species pairs. These results suggest past ecological/geographic isolation followed by asymmetric secondary contact of deep to shallow species. Our results provide another example of using rockfish as a model for studying speciation and support the role of depth as an important mechanism for diversification in the marine environment.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6110-6115, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892511

RESUMO

Research using nonhuman primate models for human disease frequently requires behavioral observational techniques to quantify functional outcomes. The ability to assess reaching and grasping patterns is of particular interest in clinical conditions that affect the motor system (e.g., spinal cord injury, SCI). Here we explored the use of DeepLabCut, an open-source deep learning toolset, in combination with a standard behavioral task (Brinkman Board) to quantify nonhuman primate performance in precision grasping. We examined one male rhesus macaque (Macaca mulatta) in the task which involved retrieving rewards from variously-oriented shallow wells. Simultaneous recordings were made using GoPro Hero7 Black cameras (resolution 1920 x 1080 at 120 fps) from two different angles (from the side and top of the hand motion). The task/device design necessitates use of the right hand to complete the task. Two neural networks (corresponding to the top and side view cameras) were trained using 400 manually annotated images, tracking 19 unique landmarks each. Based on previous reports, this produced sufficient tracking (Side: trained pixel error of 2.15, test pixel error of 11.25; Top: trained pixel error of 2.06, test pixel error of 30.31) so that landmarks could be tracked on the remaining frames. Landmarks included in the tracking were the spatial location of the knuckles and the fingernails of each digit, and three different behavioral measures were quantified for assessment of hand movement (finger separation, middle digit extension and preshaping distance). Together, our preliminary results suggest that this markerless approach is a possible method to examine specific kinematic features of dexterous function.Clinical Relevance- The methodology presented below allows for the markerless tracking of kinematic features of dexterous finger movement by non-human primates. This method could allow for direct comparisons between human patients and non-human primate models of clinical conditions (e.g., spinal cord injury). This would provide objective quantitative metrics and crucial information for assessing movement impairments across populations and the potential translation of treatments, interventions and their outcomes.


Assuntos
Dedos , Movimento , Animais , Fenômenos Biomecânicos , Mãos , Humanos , Macaca mulatta , Masculino
5.
Mol Ecol ; 30(17): 4259-4275, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34181798

RESUMO

Depth separation is a proposed driver of speciation in marine fishes, with marine rockfish (genus Sebastes) providing a potentially informative study system. Sebastes rockfishes are commercially and ecologically important. This genus encompasses more than one hundred species and the ecological and morphological variance between these species provides opportunity for identifying speciation-driving adaptations, particularly along a depth gradient. A reduced-representation sequencing method (ddRADseq) was used to compare 95 individuals encompassing six Sebastes species. In this study, we sought to identify regions of divergence between species that were indicative of divergent adaptation and reproductive barriers leading to speciation. A pairwise comparison of S. chrysomelas (black-and-yellow rockfish) and S. carnatus (gopher rockfish) FST values revealed three major regions of elevated genomic divergence, two of which were also present in the S. miniatus (vermilion rockfish) and S. crocotulus (sunset rockfish) comparison. These corresponded with regions of both elevated DXY values and reduced nucleotide diversity in two cases, suggesting a speciation-with-gene-flow evolutionary model followed by post-speciation selective sweeps within each species. Limited whole-genome resequencing was also performed to identify mutations with predicted effects between S. chrysomelas and S. carnatus. Within these islands, we identified important SNPs in genes involved in immune function and vision. This supports their potential role in speciation, as these are adaptive vectors noted in other organisms. Additionally, changes to genes involved in pigment expression and mate recognition shed light on how S. chrysomelas and S. carnatus may have become reproductively isolated.


Assuntos
Genoma , Perciformes , Adaptação Fisiológica , Animais , Deriva Genética , Especiação Genética , Humanos , Perciformes/genética , Filogenia
6.
Evol Appl ; 14(5): 1343-1364, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025772

RESUMO

Albacore (Thunnus alalunga) support an economically valuable global fishery, but surprisingly little is known about the population structure of this highly migratory species. Physical tagging data suggest that Albacore from the North and South Pacific Ocean are separate stocks, but results from previous genetic studies did not support this two stock hypothesis. In addition, observed biological differences among juveniles suggest that there may be population substructure in the North Pacific. We used double-digest restriction site-associated DNA sequencing to assess population structure among 308 Albacore caught in 12 sample areas across the Pacific Ocean (10 North, 2 South). Since Albacore are highly migratory and spawning areas are unknown, sample groups were not assumed to be equivalent to populations and the genetic data were analyzed iteratively. We tested for putatively adaptive differences among groups and for genetic variation associated with sex. Results indicated that Albacore in the North and South Pacific can be distinguished using 84 putatively adaptive loci, but not using the remaining 12,788 presumed neutral sites. However, two individuals likely represent F1 hybrids between the North and South Pacific populations, and 43 Albacore potentially exhibit lower degrees of mixed ancestry. In addition, four or five cross-hemisphere migrants were potentially identified. No genetic evidence was found for population substructure within the North Pacific, and no loci appeared to distinguish males from females. Potential functions for the putatively adaptive loci were identified, but an annotated Albacore genome is required for further exploration. Future research should try to locate spawning areas so that life history, demography, and genetic population structure can be linked and spatiotemporal patterns can be investigated.

7.
Sci Rep ; 11(1): 4466, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627705

RESUMO

Stable isotope analysis (SIA) measurements from long-term captivity studies provide required parameters for interpretation of consumer SIA data. We raised young-of-the-year (14-19 cm) California yellowtail (Seriola dorsalis) on a low δ15N and δ13C diet (pellet aquaculture feed) for 525 days, then switched to a high δ15N and δ13C diet (mackerel and squid) for 753 days. Yellowtail muscle was sequentially sampled from each individual after the diet switch (0 to 753 days) and analyzed for δ15N and δ13C, allowing for calculation of diet-tissue discrimination factors (DTDFs) from two isotopically different diets (low δ15N and δ13C: pellets; high δ15N and δ13C: fish/squid) and turnover rates of 15N and 13C. DTDFs were diet dependent: Δ15N = 5.1‰, Δ13C = 3.6‰ for pellets and Δ15N = 2.6‰, Δ13C = 1.3‰ for fish/squid. Half-life estimates from 15N and 13C turnover rates for pooled yellowtail were 181 days and 341 days, respectively, but varied considerably by individual (15N: 99-239 d; 13C: 158-899 d). Quantifying DTDFs supports isotopic approaches to field data that assume isotopic steady-state conditions (e.g., mixing models for diet reconstruction). Characterizing and quantifying turnover rates allow for estimates of diet/habitat shifts and "isotopic clock" approaches, and observed inter-individual variability suggests the need for large datasets in field studies. We provide diet-dependent DTDFs and growth effects on turnover rates, and associated error around these parameters, for application to field-collected SIA data from other large teleosts.


Assuntos
Isótopos de Carbono/metabolismo , Peixes/metabolismo , Isótopos de Nitrogênio/metabolismo , Animais , California , Fracionamento Químico/métodos , Dieta/métodos , Comportamento Alimentar/fisiologia , Músculos/metabolismo
8.
Genome Biol Evol ; 11(2): 431-438, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657886

RESUMO

Abalone are one of the few marine taxa where aquaculture production dominates the global market as a result of increasing demand and declining natural stocks from overexploitation and disease. To better understand abalone biology, aid in conservation efforts for endangered abalone species, and gain insight into sustainable aquaculture, we created a draft genome of the red abalone (Haliotis rufescens). The approach to this genome draft included initial assembly using raw Illumina and PacBio sequencing data with MaSuRCA, before scaffolding using sequencing data generated from Chicago library preparations with HiRise2. This assembly approach resulted in 8,371 scaffolds and total length of 1.498 Gb; the N50 was 1.895 Mb, and the longest scaffold was 13.2 Mb. Gene models were predicted, using MAKER2, from RNA-Seq data and all related expressed sequence tags and proteins from NCBI; this resulted in 57,785 genes with an average length of 8,255 bp. In addition, single nucleotide polymorphisms were called on Illumina short-sequencing reads from five other eastern Pacific abalone species: the green (H. fulgens), pink (H. corrugata), pinto (H. kamtschatkana), black (H. cracherodii), and white (H. sorenseni) abalone. Phylogenetic relationships largely follow patterns detected by previous studies based on 1,784,991 high-quality single nucleotide polymorphisms. Among the six abalone species examined, the endangered white abalone appears to harbor the lowest levels of heterozygosity. This draft genome assembly and the sequencing data provide a foundation for genome-enabled aquaculture improvement for red abalone, and for genome-guided conservation efforts for the other five species and, in particular, for the endangered white and black abalone.


Assuntos
Gastrópodes/genética , Genoma , Animais , Anotação de Sequência Molecular , América do Norte , Oceano Pacífico , Filogenia
9.
Environ Pollut ; 244: 926-937, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30469287

RESUMO

Endocrine disrupting chemicals (EDCs) are substances which disrupt normal functioning of the endocrine system by interfering with hormone regulated physiological pathways. Aquatic environments provide the ultimate reservoir for many EDCs as they enter rivers and the ocean via effluent discharges and accumulate in sediments. One EDC widely dispersed in municipal wastewater effluent discharges is 17α-ethynylestradiol (EE2), which is one of the most widely prescribed medicines. EE2 is a bio-active estrogen employed in the majority of oral contraceptive pill formulations. As evidence of the health risks posed by EDCs mount, there is an urgent need to improve diagnostic tools for monitoring the effects of pollutants. As the cost of high throughput sequencing (HTS) diminishes, transcriptional profiling of an organism in response to EDC perturbation presents a cost-effective way of screening a wide range of endocrine responses. Coastal pelagic filter feeding fish species analyzed using HTS provide an excellent tool for EDC risk assessment in the marine environment. Unfortunately, there are limited genome sequence data and annotation for many of these species including Pacific sardine (Sardinops sagax) and chub mackerel (Scomber japonicus), which limits the utility of molecular tools such as HTS to interrogate the effects of endocrine disruption. In this study, we carried out RNA sequencing (RNAseq) of liver RNA harvested from wild sardine and mackerel exposed for 5 h under laboratory conditions to a concentration of 12.5 pM EE2 in the tank water. We developed an analytical framework for transcriptomic analyses of species with limited genomic information. EE2 exposure altered expression patterns of key genes involved in important metabolic and physiological processes. The systems approach presented here provides a powerful tool for obtaining a comprehensive picture of endocrine disruption in aquatic organisms.


Assuntos
Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Etinilestradiol/toxicidade , Perciformes/genética , Espécies Sentinelas/genética , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , California , Disruptores Endócrinos/análise , Etinilestradiol/análise , Perfilação da Expressão Gênica , Rios/química , Poluentes Químicos da Água/análise
11.
Genes (Basel) ; 9(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366465

RESUMO

The monitoring of marine species as sentinels for ecosystem health has long been a valuable tool worldwide, providing insight into how both anthropogenic pollution and naturally occurring phenomena (i.e., harmful algal blooms) may lead to human and animal dietary concerns. The marine environments contain many contaminants of anthropogenic origin that have sufficient similarities to steroid and thyroid hormones, to potentially disrupt normal endocrine physiology in humans, fish, and other animals. An appropriate understanding of the effects of these endocrine disrupting chemicals (EDCs) on forage fish (e.g., sardine, anchovy, mackerel) can lead to significant insight into how these contaminants may affect local ecosystems in addition to their potential impacts on human health. With advancements in molecular tools (e.g., high-throughput sequencing, HTS), a genomics approach offers a robust toolkit to discover putative genetic biomarkers in fish exposed to these chemicals. However, the lack of available sequence information for non-model species has limited the development of these genomic toolkits. Using HTS and de novo assembly technology, the present study aimed to establish, for the first time for Sardinops sagax (Pacific sardine), Scomber japonicas (Pacific chub mackerel) and Pleuronichthys verticalis (hornyhead turbot), a de novo global transcriptome database of the liver, the primary organ involved in detoxification. The assembled transcriptomes provide a foundation for further downstream validation, comparative genomic analysis and biomarker development for future applications in ecotoxicogenomic studies, as well as environmental evaluation (e.g., climate change) and public health safety (e.g., dietary screening).

12.
Zootaxa ; 4413(3): 551-565, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690102

RESUMO

The genus Lampris (Lampridae) currently comprises two species, Lampris guttatus (Brünnich 1788) and L. immaculatus (Gilchrist 1905) commonly known as Opah and Southern Opah, respectively. Hyde et al. (2014) presented DNA sequence data which revealed the presence of five distinct, monophyletic lineages within L. guttatus. In this paper, we present morphological and meristic data supporting the presence of five species previously subsumed within L. guttatus (Brünnich 1788). We restrict Lampris guttatus (Brünnich 1788), resurrect L. lauta (Lowe 1838), and describe three new species of Lampris. A key to the species of Lampris is provided.


Assuntos
Peixes , Animais
13.
mSystems ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577086

RESUMO

Microbiome analyses of low-biomass samples are challenging because of contamination and inefficiencies, leading many investigators to employ low-throughput methods with minimal controls. We developed a new automated protocol, KatharoSeq (from the Greek katharos [clean]), that outperforms single-tube extractions while processing at least five times as fast. KatharoSeq incorporates positive and negative controls to reveal the whole bacterial community from inputs of as few as 50 cells and correctly identifies 90.6% (standard error, 0.013%) of the reads from 500 cells. To demonstrate the broad utility of KatharoSeq, we performed 16S rRNA amplicon and shotgun metagenome analyses of the Jet Propulsion Laboratory spacecraft assembly facility (SAF; n = 192, 96), 52 rooms of a neonatal intensive care unit (NICU; n = 388, 337), and an endangered-abalone-rearing facility (n = 192, 123), obtaining spatially resolved, unique microbiomes reproducible across hundreds of samples. The SAF, our primary focus, contains 32 sOTUs (sub-OTUs, defined as exact sequence matches) and their inferred variants identified by the deblur algorithm, with four (Acinetobacter lwoffii, Paracoccus marcusii, Mycobacterium sp., and Novosphingobium) being present in >75% of the samples. According to microbial spatial topography, the most abundant cleanroom contaminant, A. lwoffii, is related to human foot traffic exposure. In the NICU, we have been able to discriminate environmental exposure related to patient infectious disease, and in the abalone facility, we show that microbial communities reflect the marine environment rather than human input. Consequently, we demonstrate the feasibility and utility of large-scale, low-biomass metagenomic analyses using the KatharoSeq protocol. IMPORTANCE Various indoor, outdoor, and host-associated environments contain small quantities of microbial biomass and represent a niche that is often understudied because of technical constraints. Many studies that attempt to evaluate these low-biomass microbiome samples are riddled with erroneous results that are typically false positive signals obtained during the sampling process. We have investigated various low-biomass kits and methods to determine the limit of detection of these pipelines. Here we present KatharoSeq, a high-throughput protocol combining laboratory and bioinformatic methods that can differentiate a true positive signal in samples with as few as 50 to 500 cells. We demonstrate the application of this method in three unique low-biomass environments, including a SAF, a hospital NICU, and an abalone-rearing facility.

14.
BMC Genomics ; 19(1): 31, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310588

RESUMO

BACKGROUND: The assembly and annotation of a genome is a valuable resource for a species, with applications ranging from conservation genomics to gene discovery. Genomic resource development is especially important for species in culture, such as the California Yellowtail (Seriola dorsalis), the likely candidate for the establishment of commercial offshore aquaculture production in southern California. Genomic resource development for this species will improve the understanding of sex and other phenotypic traits, and allow for rapid increases in genetic improvement for and economic gain in culture production. RESULTS: We describe the assembly and annotation of the S. dorsalis genome, and present resequencing data from 45 male and 45 female wild-caught S. dorsalis used to identify a sex-determining region and marker in this species. The genome assembly captured approximately 93% of the total 685 MB genome with an average coverage depth of 180×. Using the assembled genome, resequencing data from the 90 fish were aligned to place boundaries on the sex-determining region. Sex-specific markers were developed based on a female-specific, 61 nucleotide deletion identified in that region. We hypothesize that Estradiol 17-beta-dehydrogenase is the putative sex-determining gene and propose a plausible genetic mechanism for ZW sex determination in S. dorsalis involving a female-specific deletion of a transcription factor binding motif that may be targeted by Sox3. CONCLUSIONS: Understanding the mechanism of sex determination and development of assays to determine sex is critical both for management of wild fisheries and for development of efficient and sustainable aquaculture practices. In addition, this genome assembly for S. dorsalis will be a substantial resource for a variety of future research applications.


Assuntos
Peixes/genética , Genoma , Genômica , Processos de Determinação Sexual/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados Genéticas , Peixes/metabolismo , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genômica/métodos , Mutação INDEL , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Ligação Proteica , Fatores de Transcrição
15.
R Soc Open Sci ; 4(9): 170639, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989766

RESUMO

Marine protected areas (MPAs) can facilitate recovery of diminished stocks by protecting reproductive adults. To effectively augment fisheries, however, reproductive output must increase within the bounds of MPAs so that larvae can be exported to surrounding areas and seed the region. In response to dramatic declines of rockfishes (Sebastes spp.) in southern California by the late 1990s two large MPAs, the Cowcod Conservation Areas (CCAs), were established in 2001. To evaluate whether the CCAs affected rockfish productivity we evaluated the dynamics of 8 species that were, and 7 that were not, historically targeted by fishing. Abundances of 6/8 targeted and 4/7 non-targeted species increased regionally from 1998 to 2013. These upturns were probably affected by environmental conditions in addition to changes in fishing pressure as the presence of most species correlated negatively with temperature, and temperature was lower than the historic average in 11/15 years. Seventy-five per cent of the targeted, but none of the non-targeted species increased at a greater rate inside than outside the CCAs while controlling for environmental factors. Results indicate that management actions, coupled with favourable environmental conditions, facilitated the resurgence of multiple rockfish species that were targeted by intense fishing effort for decades.

16.
Sci Rep ; 7(1): 3340, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611365

RESUMO

Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here we show that models of measured fish sound production versus independently measured fish density can be generated to estimate abundance and biomass from sound levels at FSAs. We compared sound levels produced by spawning Gulf Corvina (Cynoscion othonopterus) with simultaneous measurements of density from active acoustic surveys in the Colorado River Delta, Mexico. During the formation of FSAs, we estimated peak abundance at 1.53 to 1.55 million fish, which equated to a biomass of 2,133 to 2,145 metric tons. Sound levels ranged from 0.02 to 12,738 Pa2, with larger measurements observed on outgoing tides. The relationship between sound levels and densities was variable across the duration of surveys but stabilized during the peak spawning period after high tide to produce a linear relationship. Our results support the use of active acoustic methods to estimate density, abundance, and biomass of fish at FSAs; using appropriately scaled empirical relationships, sound levels can be used to infer these estimates.


Assuntos
Comunicação Animal , Biomassa , Perciformes/fisiologia , Comportamento Sexual Animal , Acústica , Animais
17.
Mar Genomics ; 33: 57-63, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28169128

RESUMO

Variation at the genomic level is important for understanding a species' demographic and phylogenetic history, in addition to identifying candidate regions that may be under selection and important to local adaptation. We used restriction-site associated DNA (RAD) sequencing to sample single nucleotide polymorphisms (SNPs) from the grass rockfish genome (Sebastes rastrelliger) to assess range-wide patterns of population structure and test for signatures of selection (i.e. outlier loci). Two different filtering criteria yielded 6572 and 10,393 SNPs that were genotyped in over 70% of 110 individuals from six sampling areas using RAD loci. Global FST across sampling sites is 0.0009-0.002 for all loci. Two methods for the detection of outlier loci failed to identify any outlier loci. Clustering analyses and discriminant analysis of principal components were not able to detect any population structure in our dataset. These results suggest high levels of gene flow for this species across its range and that this level of gene flow makes it difficult to detect outlier loci in the current dataset.


Assuntos
Fluxo Gênico , Perciformes/genética , Adaptação Biológica/genética , Animais , Variação Genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
Food Nutr Bull ; 37(2): 153-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26944505

RESUMO

Food fortified with folic acid has been available for consumption in North America for over a decade. This strategy has led to an increase in folate levels in the general population and, more importantly, a significant decrease in the incidence of neural tube defects. However, this increase in folate intake has been associated with a greater risk of cancer disease. Many African countries are now embracing this concept; however, because folate promotes malaria parasite division, as it does in cancer cells, there is a possibility of malaria exacerbation if folate intake is increased. A precedent for such a concern is the now compelling evidence showing that an increase in iron intake can lead to a higher malaria risk; as a result, mass administration of iron in malaria-endemic areas is not recommended. In this article, we review work on the effect of folate on malaria parasites. Although this topic has received little research attention, the available data suggest that the increase in folate concentration could be associated with an increase in malaria infection. Thus, the introduction of food fortification with folic acid in malaria-endemic areas should be attended by precautionary programs to monitor the risk of malaria.


Assuntos
Suplementos Nutricionais/efeitos adversos , Ácido Fólico/efeitos adversos , Alimentos Fortificados/efeitos adversos , Malária/epidemiologia , África , Animais , Humanos , Malária/parasitologia
19.
Science ; 348(6236): 786-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977549

RESUMO

Endothermy (the metabolic production and retention of heat to warm body temperature above ambient) enhances physiological function, and whole-body endothermy generally sets mammals and birds apart from other animals. Here, we describe a whole-body form of endothermy in a fish, the opah (Lampris guttatus), that produces heat through the constant "flapping" of wing-like pectoral fins and minimizes heat loss through a series of counter-current heat exchangers within its gills. Unlike other fish, opah distribute warmed blood throughout the body, including to the heart, enhancing physiological performance and buffering internal organ function while foraging in the cold, nutrient-rich waters below the ocean thermocline.


Assuntos
Nadadeiras de Animais/fisiologia , Temperatura Corporal , Peixes/fisiologia , Brânquias/fisiologia , Termogênese , Animais , Evolução Biológica , Temperatura Baixa , Peixes/anatomia & histologia , Peixes/sangue , Coração/fisiologia , Movimento (Física) , Vísceras
20.
PLoS One ; 9(10): e110193, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337814

RESUMO

There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range.


Assuntos
DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genética Populacional , Filogenia , Tubarões/genética , Simpatria , Alelos , Migração Animal , Animais , Sequência de Bases , Frequência do Gene , Variação Genética , Haplótipos , Havaí , Repetições de Microssatélites , Dados de Sequência Molecular , Oceano Pacífico , Análise de Sequência de DNA , Tubarões/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA