Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(4): 2387-2395, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019919

RESUMO

The effect of Pd loading on the redox characteristics of a ceria support was examined using in situ Pd K-edge XAS, Ce L3-edge XAS and in situ X-ray diffraction techniques. Analysis of the data obtained from these techniques indicates that the onset temperature for the partial reduction of Ce(IV) to Ce(III), by exposure to H2, varies inversely with the loading of Pd. Whilst the onset and completion temperatures of the reduction of Ce(IV) to Ce(III) are different, both samples yield the same maximal fraction of Ce(III) formation independent of Pd loading. Furthermore, the partial reduction of Ce is found to be concurrent with the reduction of PdO and demonstrated that the presence of metallic Pd is necessary for the reduction of the CeO2 support. Upon passivation by room temperature oxidation, a full oxidation of the reduced ceria support was observed. However, only a mild surface oxidation of Pd was identified. The mild passivation of the Pd is found to lead to a highly reactive sample upon a second reduction by H2. The onset of the reduction of Pd and Ce has been demonstrated to be independent of the Pd loading after a mild passivation with both samples exhibiting near room temperature reduction in the presence of H2.

2.
J Phys Condens Matter ; 33(28)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949972

RESUMO

Platinum group metals such as palladium and rhodium based catalysts are currently being implemented in gasoline particulate filter (GPF) autoexhaust after treatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. Thisoperandostudy follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2and O2was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 °C. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 °C post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance.

3.
J Phys Condens Matter ; 33(26)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-33902025

RESUMO

Use ofin situcombined x-ray diffraction and x-ray absorption spectroscopy for the study of the thermal decomposition of zinc peroxide to zinc oxide is reported here. Comparison of data extracted from both x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) with thermo gravimetric analysis (TGA) enabled us to follow the nature of the conversion of ZnO2to ZnO. A temperature range between 230 °C and 350 °C appears to show that a very poorly crystalline ZnO is formed prior to the formation of an ordered ZnO material. Both the decrease in white line intensity in the Zn K-edge XANES and resulting lower coordination numbers estimated from analysis of the Zn K-edge data of ZnO heated at 500 °C, in comparison to bulk ZnO, suggest that the ZnO produced by this method has significant defects in the system.

4.
Phys Chem Chem Phys ; 23(10): 5888-5896, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33660717

RESUMO

Copper containing materials are widely used in a range of catalytic applications. Here, we report the use of Cu K-edge high resolution XANES to determine the local site symmetry of copper ions during the thermal treatment of a Cu-Cr-Fe oxide catalyst. We exploited the Cu K-edge XANES spectral features, in particular the correlation between area under the pre-edge peak and its position to determine the local environment of Cu2+ ions. The information gained from this investigation rules out the presence of Cu2+ ions in a tetrahedral or square planar geometry, a mixture of these sites, or in a reduced oxidation state. Evidence is presented that the Cu2+ ions in the Cu-Cr-Fe oxide system are present in a distorted octahedral environment.

5.
Materials (Basel) ; 13(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322695

RESUMO

The transient nature of the internal pore structure of particulate wall flow filters, caused by the continuous deposition of particulate matter, makes studying their flow and filtration characteristics challenging. In this article we present a new methodology and first experimental demonstration of time resolved in-situ synchrotron micro X-ray computed tomography (micro-CT) to study aerosol filtration. We directly imaged in 4D (3D plus time) pore scale deposits of TiO2 nanoparticles (nominal mean primary diameter of 25 nm) with a pixel resolution of 1.6 µm. We obtained 3D tomograms at a rate of ∼1 per minute. The combined spatial and temporal resolution allows us to observe pore blocking and filling phenomena as they occur in the filter's pore space. We quantified the reduction in filter porosity over time, from an initial porosity of 0.60 to a final porosity of 0.56 after 20 min. Furthermore, the penetration depth of particulate deposits and filtration rate was quantified. This novel image-based method offers valuable and statistically relevant insights into how the pore structure and function evolves during particulate filtration. Our data set will allow validation of simulations of automotive wall flow filters. Evolutions of this experimental design have potential for the study of a wide range of dry aerosol filters and could be directly applied to catalysed automotive wall flow filters.

6.
Phys Chem Chem Phys ; 22(34): 18882-18890, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32330216

RESUMO

In situ studies on the physical and chemical properties of Au in inverse ceria alumina supported catalysts have been conducted between 295 and 623 K using high energy resolved fluorescence detection X-ray absorption near edge spectroscopy and X-ray total scattering. Precise structural information is extracted on the metallic Au phase present in a 0.85 wt% Au containing inverse ceria alumina catalyst (ceria/Au/alumina). Herein evidence for the formation of an Au hydride species at elevated temperature is presented. Through modelling of total scattering data to extract the thermal properties of Au using Grüneisen theory of volumetric thermal expansion it proposed that the Au Hydride formation occurs synergistally with the formation of a cerium oxyhydride. The temperature reversible nature, whilst remaining in a reducing atmosphere, demonstrates the activation of hydrogen without consumption of oxygen from the supporting ceria lattice.

7.
ACS Omega ; 4(7): 11338-11345, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460237

RESUMO

Here, we report the use of Li2Mn(SO4)2 as a potential energy storage material and describe its route of synthesis and structural characterization over one electrochemical cycle. Li2Mn(SO4)2 is synthesized by ball milling of MnSO4·H2O and Li2SO4·H2O and characterized using a suite of techniques, in particular, ex situ X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy on the Mn and S K-edges to investigate the electronic and local geometry around the absorbing atoms. The prepared Li2Mn(SO4)2 electrodes undergo electrochemical cycles to different potential points on the charge-discharge curve and are then extracted from the cells at these points for ex situ structural analysis. Analysis of X-ray absorption spectroscopy (both near and fine structure part of the data) data suggests that there are minimal changes to the oxidation state of Mn and S ions during charge-discharge cycles. However, X-ray photoelectron spectroscopy analysis suggests that there are changes in the oxidation state of Mn, which appears to be different from the conclusion drawn from X-ray absorption spectroscopy. This difference in results during cycling can thus be attributed to electrochemical reactions being dominant at the surface of the Li2Mn(SO4)2 particles rather than in the bulk.

8.
Chemphyschem ; 17(21): 3494-3503, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27569997

RESUMO

The structure of several nano-sized ceria, CeO2 , systems was investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction and total pair distribution functions (PDFs) revealed that in all of the samples the occupancy of both Ce4+ and O2- are very close to the ideal stoichiometry, the analysis using Reverse Monte Carlo technique revealed significant disorder around oxygen atoms in the nano-sized ceria samples in comparison to the highly crystalline NIST standard. In addition, the analysis revealed that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributable to the particle size of the CeO2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L3 - and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, is attributed to differences in particle size.

9.
Environ Sci Technol ; 48(7): 3658-65, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24568168

RESUMO

Given emerging concerns about the bioavailability and toxicity of anthropogenic platinum compounds emitted into the environment from sources including vehicle emission catalysts (VEC), the platinum species present in selected North American sourced fresh and road-aged VEC were determined by Pt and Cl X-ray absorption spectroscopy. Detailed analysis of the Extended X-ray Absorption Fine Structure at the Pt L3 and L2 edges of the solid phase catalysts revealed mainly oxidic species in the fresh catalysts and metallic components dominant in the road-aged catalysts. In addition, some bimetallic components (Pt-Ni, Pt-Pd, Pt-Rh) were observed in the road-aged catalysts from supporting Ni-, Pd-, and Rh-K edge XAS studies. These detailed analyses allow for the significant conclusion that this study did not find any evidence for the presence of chloroplatinate species in the investigated solid phase of a Three Way Catalyst or Diesel Oxidation Catalysts.


Assuntos
Platina/química , Emissões de Veículos/análise , Espectroscopia por Absorção de Raios X , Catálise , Gasolina/análise , Humanos , Veículos Automotores , América do Norte , Oxirredução , Padrões de Referência , Espectrometria por Raios X , Fatores de Tempo
10.
Phys Chem Chem Phys ; 15(28): 11766-74, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23752302

RESUMO

We report the structural changes that occur during the thermal removal of organic template molecules that occlude the pores of small pore nanoporous zeolitic solids, AlPO-18, SAPO-18, CoAlPO-18, ZnAlPO-18 and CoSAPO-18. The calcination process is a necessary step in the formation of active catalysts. The studies performed using time-resolved High Resolution Powder Diffraction (HRPD) and High Energy X-ray Diffraction (HEXRD) techniques at various temperatures reveal that changes that take place are dependent on the type of heteroatom present in the nanoporous solids. While time-resolved HRPD shows clear changes in lattice parameters during the removal of physisorbed water molecules and subsequent removal of the organic template, HEXRD data show changes in various near neighbour distances in AlPO-18, SAPO-18, CoAlPO-18, CoSAPO-18 and ZnAlPO-18 during the calcination process. In particular HEXRD reveals the presence of water molecules coordinated to Al(III) ions in the as-synthesised materials. Upon removal of the template and water, these solids show contraction in the cell volume at elevated temperatures while first and second neighbour distances remained almost unchanged.

11.
Phys Chem Chem Phys ; 15(22): 8555-65, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23657756

RESUMO

The PdO-Pd phase transformation in a 4 wt% Pd/Al2O3 catalyst has been investigated using in situ X-ray absorption spectroscopy (XAS) and in situ X-ray total scattering (also known as high-energy X-ray diffraction) techniques. Both the partial and total pair distribution functions (PDF) from these respective techniques have been analysed in depth. New information from PDF analysis of total scattering data has been garnered using the differential PDF (d-PDF) approach where only correlations orginating from PdO and metallic Pd are extracted. This method circumvents problems encountered in characerising the catalytically active components due to the diffuse scattering from the disordered γ-Al2O3 support phase. Quantitative analysis of the palladium components within the catalyst allowed for the phase composition to be established at various temperatures. Above 850 °C it was found that PdO had converted to metallic Pd, however, the extent of reduction was of the order ca. 70% Pd metal and 30% PdO. Complementary in situ XANES and EXAFS were performed, with heating to high temperature and subsequent cooling in air, and the results of the analyses support the observations, that residual PdO is detected at elevated temperatures. Hysteresis in the transformation upon cooling is confirmed from XAS studies where reoxidation occurs below 680 °C.

12.
Phys Chem Chem Phys ; 12(2): 484-91, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20023826

RESUMO

Removal of pollutants such as mercury at elevated temperatures provides improvements in the overall thermal efficiency during the process of coal gasification. The two high temperature sorbents studied were 5 wt% Pd/Al(2)O(3) and 5 wt% Pd/SiO(2): materials shown to have significantly different Hg adsorption capacities. A combination of XRD and EXAFS has been used to characterize the Pd-Hg alloy formed when these Pd-based sorbents were exposed to fuel gas (CO, CO(2), H(2)) containing Hg vapour at 204 degrees C. Significant differences were found in the nature of the alloy formed on the two sorbents following Hg exposure. The Pd/Al(2)O(3) sorbent produced a single homogeneous solid solution of Pd-Hg whilst the silica-supported Pd produced an alloy of varying composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA